Learning Better Lossless Compression Using Lossy Compression

Fabian Mentzer
Luc Van Gool
Michael Tschannen

What and Why

Encode residual of lossy image compression algorithm BPG to do lossless compression.

BPG x

BPG x_l

Residual $x - x_l$

Residual is centered closely around 0 → ______

Set of symbols:

Setup: Finite set of symbols, the probability of a symbol occurring is given by the probability distribution p.

We can encode a stream of symbols losslessly to a bistream with **Arithmetic Coding**.

Set of symbols:

Setup: Finite set of symbols, the probability of a symbol occurring is given by the probability distribution p.

We can encode a stream of symbols losslessly to a bistream with **Arithmetic Coding**.

Stream of symbols:

This is an example stream. $p(\slashed{\nearrow})$ is higher, so we want to use fewer bits when encoding a banana symbol!
That's what arithmetic coding does.

Set of symbols:

Setup: Finite set of symbols, the probability of a symbol occurring is given by the probability distribution p.

We can encode a stream of symbols losslessly to a bistream with **Arithmetic Coding**.

Arithmetic coding assigns a bit-sequence to each symbol, such that more likely symbols get shorter sequences. We encode the stream of symbols into one bitstream.

Set of symbols:

Setup: Finite set of symbols, the probability of a symbol occurring is given by the probability distribution p.

We can encode a stream of symbols losslessly to a bistream with **Arithmetic Coding**.

Decoding recovers the stream

Set of symbols:

Problem: In general, we don't know p. So we learn a model p' for it by minimizing the cross-entropy H(p, p'). This is the same as minimizing the negative log likelihood of p' over mini-batches.

Lossless Compression

BPG x

BPG x_l

Residual $x - x_l$

So, to encode this residual, all we need is a model p(r).

Encoding

- 1. Get quality factor Q for BPG from the learned Q-classifier (QC).
- 2. Encode input x with BPG using that Q, get x_l and save to bitstream.

Encoding

3. Feed x_l to the **learned Residual Compressor (RC)**, which predicts the conditional PMF $p(r|x_l)$.

Decoding

- 1. Obtain x_l from the bitstream.
- 2. Feed x_l into RC to get PMF $p(r|x_l)$.

Decoding

3. Decode r from the bitstream, using the PMF $p(r|x_l)$ and arithmetic coding.

Decoding

4. Obtain $x = r + x_l$.

Results

State of the Art on Open Images, where we train.

Results

Better than previous learned method (L3C) on other datasets

