Our Solution @ WebVision 2020

VPR

VIRTUAL JUNE 14-19

An Effective Approach for

Learning from Large-scale Web Images

Speaker: Lingxi Xie

The Smart_Image Team, Huawei Inc.

The Smart_Image Team

- A combined team* from Huawei Noah's Ark Lab and Huawei Cloud El
 - Model training: Zewei Du, Bincheng Liu, Longhui Wei, Zhao Yang
 - Model ensemble: Hang Chen, Yaxiong Chi
 - Technical support: Zhengsu Chen, Jianzhong He
 - **Overall schedule:** Lingxi Xie, Xiaopeng Zhang
 - **Computational resource:** Xiaolong Bai
 - Team organization: Hongjie Si, Qi Tian

- An overview of the WebVision 2020 challenge
- Our solution: learning, mining, and fusion
 - Learning: the selection of network backbones
 - **Mining:** playing with the noisy dataset
 - Fusion: a community works better
- Failure trials also deliver knowledge
- Summary and conclusions

HUAWEI

3

- An overview of the WebVision 2020 challenge
- Our solution: learning, mining, and fusion
 - Learning: the selection of network backbones
 - **Mining:** playing with the noisy dataset
 - Fusion: a community works better
- Failure trials also deliver knowledge
- Summary and conclusions

HUAWEI

4

Overview: WebVision 2020 Challenge

- The WebVision 2.0 dataset
 - 5K classes, covering coarse and fine classes
 - Crawled from the Web using text queries
- The challenge
 - Training data: ~16M (with duplicate)
 - Validation data: ~300K (relatively clean)
 - Test data: ~300K (labels are unavailable)
 - Top-5 accuracy, class-level average

NUAWEI 🕪

The Real Challenges!

- The dataset has 5,000 object categories
 - There exist a lot of fine-grained concepts that are difficult to recognize
 - There also exist some abstract concepts that are **almost impossible** to learn

#3005: common+man, commoner, common+person

#2070: peak+limit, extremum+limitation, ...

#1476: life+soul, life+person,
life+normal, life+someone, ...

The Real Challenges!

- The training data has 5,000 object categories
 - There exist a lot of fine-grained concepts that are difficult to recognize
 - There also exist some abstract concepts that are almost **impossible** to learn
- Training data distribution and noise
 - But, the difficulty of a class is not necessarily related to the number of training images of the class (*e.g.* some abstract classes may have a lot of noisy data)
 - The noise may come from different aspects (*e.g.* wrong labels, ambiguity, *etc.*)

- An overview of the WebVision 2020 challenge
- Our solution: learning, mining, and fusion
 - Learning: the selection of network backbones
 - **Mining:** playing with the noisy dataset
 - Fusion: a community works better
- Failure trials also deliver knowledge
- Summary and conclusions

HUAWEI

8

Learning: Which Backbones Are Effective?

- We used ResNet-based backbones
 - ResNet-50/101/152: the original networks with different depths
 - ResNeXt-152: the network with group convolutions
 - ResNeSt-269: adding the split-attention modules
 - Other combinations: SE-ResNet-154, SE-ResNeXt-152, etc.
- We tried EfficientNet-Bo/B4 but decided not to use them
 - EfficientNet-based models converge much slower
 - EMA is very important for improving single-model performance for EfficientNetbased models, but using EMA may harm the performance of model ensemble

S. Xie et al., Aggregated Residual Transformations for Deep Neural Networks, CVPR, 2017.

- J. Hu et al., Squeeze-and-Excitation Networks, CVPR, 2018.
- M. Tan et al., EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, ICML, 2019.
 H. Zhang et al., ResNeSt: Split-Attention Networks, arXiv preprint: 2004.08955, 2020.

K. He et al., Deep Residual Learning for Image Recognition, CVPR, 2016.

Bag-of-Tricks of Network Training

- We applied Huawei's ModelArts for large-scale distributed training
 - For an introduction to ModelArts, please visit: https://support.huaweicloud.com/en-us/productdesc-modelarts/modelarts_01_0001.html
- Tricks for network training and testing
 - We used RandAugment to alleviate over-fitting
 - We applied class-level sampling balance (using 3,600 training images for each class, if not enough, then duplicating some images)
 - We tuned the starting learning rate carefully
 - We used multi-scale training
 - We used multi-scale, multi-crop testing

Mining: Filtering out Noise in the Dataset

- We used AUM to measure the cleanness of each training image
 - After a complete training process, each image is assigned a value of AUM, which can be used to determine if this image will be used in the next round
 - We filtered 20% of training images with lowest AUM values
 - Typically, AUM can improve the class-averaged top-5 accuracy by ~0.5%
- We also tried knowledge distillation, but observed little accuracy gain

HUAWEI

G. Pleiss *et al.*, Identifying Mislabeled Data using the Area Under the Margin Ranking, *arXiv preprint:* 2001.10528, 2020.

Fusion: Ensemble with 100+ Results!

- Average fusion works sufficiently well
 - We have trained more than 50 models: different backbones, different training strategies (*e.g.* AUM on/off), different input sizes, *etc.*
 - Some models contributed single-crop, 5-crop, and 10-crop results individually
 - We have fused 128 results: the more we used, the better results we obtained
 - The best single model reports ~81% accuracy, but even so, adding some weak models with ~70% accuracy can improve fusion performance
- We have adjusted model-wise weights to boost stronger models
 - A standard genetic algorithm with crossover and mutation
 - This slightly improves accuracy (~0.1%) on both validation and test sets

Results and Our Submission

- Single model (take SE-ResNet-154 as an example)
 - The baseline top-5 validation accuracy is ~79.8%
 - After AUM is applied, the top-5 validation accuracy is boosted to ~80.5%
 - After KD is applied, the top-5 validation accuracy is boosted to ~80.7%
 - Many others, ignored here
- Model ensemble
 - A simple ensemble with score average reports 82.80%
 - When the genetic algorithm is used, the accuracy is boosted to 82.94%
 - The 82.94% method reports 82.97% on the test set

- An overview of the WebVision 2020 challenge
- Our solution: learning, mining, and fusion
 - Learning: the selection of network backbones
 - **Mining:** playing with the noisy dataset
 - Fusion: a community works better
- Failure trials also deliver knowledge
- Summary and conclusions

Lessons Learned from Failure Trials

The reason for the following observations remains mostly unclear

- Powerful architectures on ImageNet do not work well on WebVision
 - EfficientNet-B4 was just a little bit stronger to ResNet-50
 - ResNeSt-269 did not show great advantage over SE-ResNeXt-154
- Data mining methods do not improve upon the high baseline
 - Reducing the weight of 70%-90% AUM-ranked data produced worse results
 - Fine-tuning with training data of the worst 500 classes and then fusing the finetuned model with the original model did not improve overall accuracy
- Advanced ensemble does not bring much gain beyond a naïve average
 - We noticed that the score distribution of different models vary a lot

- An overview of the WebVision 2020 challenge
- Our solution: learning, mining, and fusion
 - Learning: the selection of network backbones
 - **Mining:** playing with the noisy dataset
 - Fusion: a community works better
- Failure trials also deliver knowledge
- Summary and conclusions

Summary and Conclusions

- What have we done?
 - WebVision 2020: 5K classes with 16M **noisy** training images
 - A top-5 accuracy of **82.97**%, advancing the previous state-of-the-art
- What have we learned from the challenge?
 - In a large-scale dataset, tricks obtained on small datasets might not work
 - There are different types of noise, so aggressive filtering might not work well
- What shall we do in the future?
 - Exploring the solution of using stronger backbones
 - Diagnosing the noise and looking for a better way to alleviate it
 - Building an automatic flowchart for learning from a large-scale, noisy dataset

Thanks!

• Questions, please?

