Rethinking Class-Balanced Methods for Long-tailed Visual Recognition from a Domain Adaptation Perspective

M. Abdullah Jamal

Matthew Brown Ming-Hsuan Yang

Liqiang Wang

Boqing Gong

Long-tailed Problem

Emerging challenge as the datasets grow in scale

Prevalent in fine-grained recognition, detection, etc.

Datasets: iNaturalist, LVIS, ImageNet, COCO, etc.

Visual Genome

Common Objects in Context

Shortcomings of Current Approaches

New Perspective - Domain Adaptation

Setup

Source domain (with labeled data) $D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim \begin{array}{l} P_{\mathcal{S}}(X, Y) \\ \text{Target domain (no labels for training)} \\ D_{\mathcal{T}} = \{(x_n, ?)\}_{n=1}^{\mathsf{N}} \sim \begin{array}{l} P_{\mathcal{T}}(X, Y) \\ P_{\mathcal{T}}(X, Y) \end{array}$

Different distributions

Objective

Learn models to work well on target

Existing Works

Assume target shift

*P*_s(x|Common Slider) = *P*_t(x|Common Slider)

*P*_s(x|King Eider) = *P*_t(x|King Eider)

But

*P*_s(x|Common Slider) = *P*_t(x|Common Slider)

*P*_s(x|King Eider) ≠ *P*_t(x|King Eider)

A Bird's Eye View

Expects to perform well on all classes Two-Component Approach error = $\mathbb{E}_{P_t(x,y)}L(f(x;\theta),y)$ $= \mathbb{E}_{P_s(x,y)} L(f(x;\theta), y) P_t(x,y) / P_s(x,y)$ $= \mathbb{E}_{P_s(x,y)} L(f(x;\theta),y) \frac{P_t(y)P_t(x|y)}{P_s(y)P_s(x|y)}$ $:= \mathbb{E}_{P_s(x,y)} L(f(x;\theta), y) w_y(1 + \tilde{\epsilon}_{x,y})$

[CVPR'19] Class-Balanced Loss Based on Effective Number of Samples $(1 - \beta) / (1 - \beta^n)$

[ICML'18] Learning to reweight examples for robust deep learning Meta-learning framework

Two-Component Approach

	L2RW	Ours
Pre-training	Х	\checkmark
Clip negative ϵ	\checkmark	Х
Normalization	\checkmark	Х
Free Space of ϵ	reduced	larger

$$:= \mathbb{E}_{P_s(x,y)} L(f(x;\theta), y) w_y(1 + \tilde{\epsilon}_{x,y})$$

[CVPR'19] Class-Balanced Loss Based on Effective Number of Samples

(1 - β) / (1- βⁿ)

[ICML'18] Learning to reweight examples for robust deep learning Meta-learning framework

Experiments

Six datasets

- CIFAR-LT-10
- CIFAR-LT-100
- iNaturalist 2017 & 2018
- ImageNet-LT
- Places-LT

Imbalance factor	200	100	50	20	10	1
Cross-entropy training	34.32	29.64	25.19	17.77	13.61	7.53/7.11*
Class-balanced cross-entropy loss [7]	31.11	27.63	21.95	15.64	13.23	7.53/7.11*
Class-balanced fine-tuning	33.76	28.66	22.56	16.78	16.83	7.08
Class-balanced fine-tuning*	33.92	28.67	22.58	13.73	13.58	6.77
L2RW [41]	33.75	27.77	23.55	18.65	17.88	11.60
L2RW [41]*	33.49	25.84	21.07	16.90	14.81	10.75
Meta-weight net [45]	32.8	26.43	20.9	15.55	12.45	7.19
Ours with cross-entropy loss	29.34	23.59	19.49	13.54	11.15	7.21

Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 under different imbalance settings. * indicates results reported in [45].

Imbalance factor	200	100	50	20	10	1
Cross-entropy training	34.32	29.64	25.19	17.77	13.61	7.53/7.11*
Class-balanced cross-entropy loss [7]	31.11	27.63	21.95	15.64	13.23	7.53/7.11*
Class-balanced fine-tuning	33.76	28.66	22.56	16.78	16.83	7.08
Class-balanced fine-tuning*	33.92	28.67	22.58	13.73	13.58	6.77
L2RW [41]	33.75	27.77	23.55	18.65	17.88	11.60
L2RW [41]*	33.49	25.84	21.07	16.90	14.81	10.75
Meta-weight net [45]	32.8	26.43	20.9	15.55	12.45	7.19
Ours with cross-entropy loss	29.34	23.59	19.49	13.54	11.15	7.21

Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 under different imbalance settings. * indicates results reported in [45].

Focal loss [32]	34.71	29.62	23.29	17.24	13.34	6.97
Class-balanced focal Loss [7]	31.85	25.43	20.78	16.22	12.52	6.97
Ours with focal Loss	25.57	21.1	17.12	13.9	11.63	7.19
LDAM loss [4] (results reported in paper)	-	26.65	-	-	13.04	11.37
LDAM-DRW [4] (results reported in paper)	-	22.97	-	-	11.84	-
Ours with LDAM loss		20.0	17.77	15.63	12.6	10.29

What are the learned ϵ

Long-tailed visual recognition

 A new perspective from Domain Adaptation

- A two-component approach

- SOTA results on six datasets

Domain Adaptation

A powerhouse of ideas & techniques

- Domain-invariant representations
- Maximum Mean Discrepancy
- Curriculum Domain Adaptation
- Adversarial adaptation
- Self-supervised adaptation

