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Action Segmentation

[ Action segmentation = Action Recognition + Temporal Segmentation }
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Action Segmentation

Source Videos
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Challenge

Source Videos Target Videos
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Adapting Source Model

I Goal I

Adapt the source model
without additional labels

Model Adaptation
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Temporal Domain Permutation
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Self-Supervised Temporal Domain Adaptatlon (SSTDA)
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ADC: Adversarial @
Domain Confusion [1]

L;4: local domain loss

Lgq: global domain loss [ ADC ]

[1] JMLR 16
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Our Approach: SSTDA
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Self-Supervised Temporal Domain Adaptation
(SSTDA)

Video-based Domain Adaptation with self-supervised
learning to reduce variations in videos
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Experimental Results

Ground Truth -
Prediction . .

50Salads [1]

Source-only: results from directly running the official released code of MS-TCN [2]

50Salads F1@10 F1@25 F1@50 Edit score
Source-only [2] 75.4 73.4 65.2 68.9
Local SSTDA 79.2 77.8 70.3 72.0
SSTDA 83.0 81.5 73.8 75.8

Effectively exploit unlabeled target videos for action segmentation

[1] UbiComp 13, [2] CVPR 19 10



Comparison: Unlabeled Target Videos

50Salads F1@10 F1@25 F1@50 Edit score
Source-only 75.4 73.4 65.2 68.9
VCOP [1] 75.8 73.8 65.9 68.4
DANN [2] 79.2 77.8 70.3 72.0
JAN [3] 80.9 79.4 72.4 73.5
MADA [4] 79.6 77.4 70.0 72.4
MSTN [5] 79.3 77.6 71.5 72.1
MCD [6] 78.2 75.5 67.1 70.8
SWD [7] 78.2 76.2 67.4 71.6
SSTDA 83.0 81.5 73.8 75.8

Jointly adapt domains with multiple temporal scales
can better address discrepancy problems for videos

[1] CVPR 19, [2] JMLR 16, [3] ICML 17, [4] AAAI 18, [5] ICML 18, [6] CVPR 2018, [7] CVPR 19



Visualization: 50Salads
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. action start . peel cucumber ‘.l cut cucumber place cucumber into bowl . cut tomato
. place tomato into bowl . cut lettuce place lettuce into bowl . cut cheese . place cheese into bowl
mix ingredients add oil add vinegar . mix dressing . add pepper

. serve salad onto plate . add dressing

. action end 12

[1] CVPR 19



Summary

e Goal: adapt action segmentation models using unlabeled videos

* Approach: Self-Supervised Temporal Domain Adaptation (SSTDA)

* Perform domain adaptation for multiple temporal scales
e Learn feature representations with domain-invariant temporal dynamics

e Qutperform other self-supervised methods and image-based DA methods
* Improve action segmentation by large margins using unlabeled target videos
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