

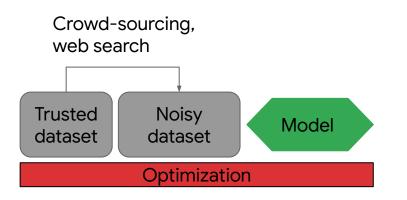
Google Research

Distill Effective Supervision from Severe Label Noise

Zizhao Zhang | Han Zhang | Sercan Ö. Arık | Honglak Lee | Tomas Pfister Google Cloud Al, Google Brain

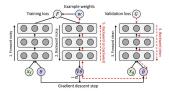
Noisy label in Practice

Practically-common scenario

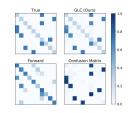


Previous work

MentorNet, Jiang et al. ICML 2018

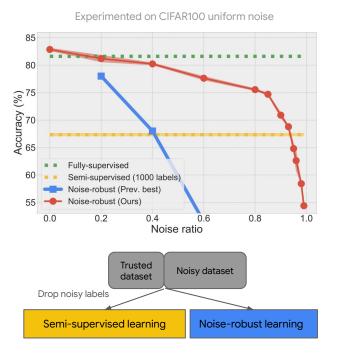


Learning-to-reweight, Ren et al, ICML 2018



TruestedData, Hendrycks et al., NeuIPS 2019

Google Research



Green line: Fully-supervised baseline without label noise.

Blue line: Noise-robust methods can be severely affected if the label noise ratio is high, e.g. > 50% label noise.

Yellow line: Semi-supervised learning (SSL) methods, which discard labels of the large noisy-label dataset.

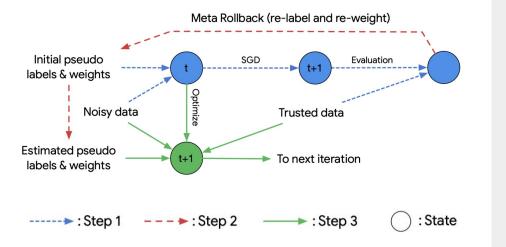
Red line: Our method significantly improves noise-robust training.

Previous methods still suffer from high label noise.

How can do better utilize the hidden correct labels in the big noisy-label datasets?

Our method estimates **Data Coefficients** with a generalized meta learning framework to distill effective

supervision from label noise.



Key training steps

- Obtain initial pseudo label candidates
- Contrust meta re-labeling and re-weighting in a generalized meta learning framework. Re-labeling is formulated as a differential selection problem between estimated labels and original labels.
- Construct composed losses with estimated data coefficients.
- Train a model for one step.

Key insights (see paper):

- Better initial pseudo labels
- Better regularizations

Initial Pseudo Labels

Pseudo label estimator $g(x_i, \Phi)$ average predictions of augmentations and then apply softmax temperature calibration

$$g(x, \Phi)_i = Pr_i^{\frac{1}{\tau}} / \sum_i Pr_i^{\frac{1}{\tau}}$$
, where $Pr = \frac{1}{K} \left(\Phi(x) + \sum_k^{K-1} \Phi(\hat{x}_k) \right)$

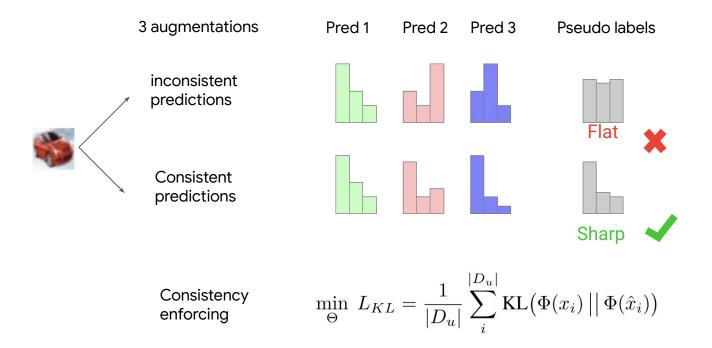
For augmentation, we use AutoAugment/RandAugment:

geomatic/color transformation →flip→random crop→cutout

Inspired by MixMatch, Berthelot et al, NeurIPS, 2019

Figure 1: Diagram of the label guessing process used in MixMatch. Stochastic data augmentation is applied to an unlabeled image K times, and each augmented image is fed through the classifier. Then, the average of these K predictions is "sharpened" by adjusting the distribution's temperature. See algorithm 1 for a full description.

Pseudo labels need consistent predictions



Algorithm 1: A training step of our method at time step t

Input: Current model parameters Θ^t , A batch of training data X_u from D_u , a batch of probe data X_p from D_p , loss weight k and p, threshold T

Output: Updated model parameters Θ^{t+1}

- 1 Generate the augmentation \hat{X}_u of X_u .
- 2 Estimate the pseudo labels via

 $g(x_u, \Phi), x_u \sim X_u \cup \hat{X}_u$ (Section 4.1 & 4.2).

- 3 Compute optimal data coefficients λ^* and ω^* via the meta step (Section 4.3).
- 4 Split the training batch X_u (also corresponding \hat{X}_u) to possible clean batch X_u^c and possible mislabeled batch X_u^u using the binary criterion $\mathbb{I}(\omega^* < T)$.
- 5 Construct the joint batch set (Section 4.4),

$X_p \cup X_u^u \cup X_u^c \cup \hat{X}_u^u \cup \hat{X}_u^u,$

where $\hat{X}_{u}^{u} \cup X_{u}^{u}$ uses pseudo labels estimated by $g(\cdot, \Phi)$.

6 Compute the total loss for model update

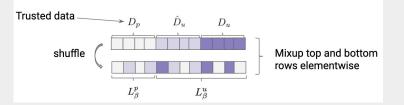
 $L_{\omega^*} + L_{\lambda^*} + L_{\beta}^p + p L_{\beta}^u + k L_{\mathrm{KL}}.$

7 Conduct one step stochastic gradient descent to obtain Θ^{t+1} .

The training losses are composted by multiple cross-entropy losses using learned data coefficients (weights and pseudo labels)

Introduce probe data in actual updating:

 MixUp is used to "gently" introduce the probe data with possibly-noisy data as training data



Experiments

State-of-the-art over many benchmarks

Two used networks: WRN28-10 (default) and ResNet29 (very light)

Method	M	Noise ratio			
		0	0.2	0.4	0.8
GCE [48]	-	93.5	89.9±0.2	87.1±0.2	67.9±0.6
MentorNet DD [17]	5k	96.0	92.0	89.0	49.0
RoG [20]	-	94.2	87.4	81.8	-
L2R [33]	1k	96.1	$90.0{\pm}0.4^{*}$	$86.9 {\pm} 0.2$	$73.0{\pm}0.8^{*}$
Arazo et al. [1]	-	93.6	94.0	92.0	86.8
Ours-RN29	0.1k	94.4	92.9±0.2	92.5±0.5	85.6+1.1
Ours	0.01k	96.8	$95.4{\pm}0.6$	$94.5 {\pm} 1.0$	87.9 ± 5.1
Ours	0.05k	96.8	$96.4{\pm}0.0$	$95.5 {\pm} 0.6$	$91.8 {\pm} 3.0$
Ours	0.1k	96.8	96.2±0.2	95.9±0.2	93.7±0.5

0.01k: 1 probe image per class

Method	M	Noise ratio			
		0	0.2	0.4	0.8
GCE [48]	-	81.4	66.8±0.4	61.8±0.2	47.7±0.7
MentorNet [17]	5k	79.0	73.0	68.0	35.0
L2R [33]	1k	81.2	$67.1 {\pm} 0.1^*$	61.3+2.0	$35.1{\pm}1.2^{*}$
Arazo et al. [1]		70.3	68.7	61.7	48.2
Ours-RN29	1k	72.1	69.3±0.5	$67.0{\pm}0.8$	60.7±1.0
Ours	0.1k	83.0	77.4 ± 0.4	75.1 ± 1.1	62.1 ± 1.2
Ours	0.5k	83.0	$80.4{\pm}0.5$	$79.6 {\pm} 0.3$	73.6 ± 1.5
Ours	1 k	83.0	$\textbf{81.2}{\pm}\textbf{0.7}$	80.2±0.3	75.5±0.2

0.1k: 1 probe image per class

Table 1: CIFAR10 with uniform noises.

- Upto 9% (86.8% -> 93.7%) improvement.
- Outperform others with a much smaller ResNet and uses 1 trusted train data/class.

Table 2: CIFAR100 with uniform noises.

- Upto 56% (48.2% -> 75.5%) improvement.
- Outperform others with a much smaller ResNet and uses 1 trusted train data/class.

Method	Noise ratio			
	0.2	0.4	0.8	
GCE [48]	89.5±0.3	82.3±0.7	-	
LC [30]	89.1±0.5	$83.6{\pm}0.3$	-	
Ours-RN29	92.7±0.2	90.2±0.5	78.9±3.5	
Ours	96.5±0.2	94.9±0.1	79.3±2.4	

Table 1: Asymmetric noise on CIFAR10.

Method	CIFAR10 (34%)	CIFAR100 (37%)
RoG [20]	70.0	53.6
L2R* [33]	71.0	56.9
Ours-RN29	81.8	65.1
Ours	88.3	73.7

* Trained by us

Table 2: Experiments with semantic noise where labels are generated by a neural network trained on limited data. The resulting noise ratio is shown in parentheses.

Method	mini	full
Co-teaching [13]	61.5/84.7	-
Chen <i>el al</i> . [5]	61.6/85.0	-
MentorNet [17]	63.8/85.8	64.2/84.8
Ours-RN50	78.0/94.4	65.8/85.8
Ours	80.0/94.9	69.0/88.3

mini: 60k (50 class) full: 2M (1000 class)

Method	Accuracy
ResNet50 [22]	81.44
CleanNet [22]	83.95
Self-Learning [14]	85.11
Ours-RN50	87.57

Table 1: WebVision 2M comparison the on min and full version (10 clean ImageNet training images per class is used).

- Upto 25% (63.8% -> 80.0%) improvement.
- Outperform MentorNet even with a much smaller ResNet50 compared with default InceptionResNetv2.

Table 2: Food101N comparison.

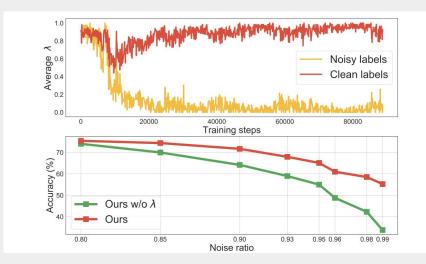
Data coefficients: exemplar weights and labels

$$\Theta^*(\omega|\lambda) = \arg\min_{\Theta} \sum_{i=1} \omega_i L(\mathcal{P}(\lambda_i), \Phi(x_i; \Theta)),$$

 $\mathcal{P}(\lambda_i) = \lambda_i y_i + (1 - \lambda_i) g(x_i, \Phi) \quad s.t. \ 0 \le \lambda_i \le 1$

Binary selection formulation: Smaller \lambda favors pseudo labels

Study on CIFAR100



Our method

- Estimates Data Coefficients, exemplar weights and labels, to distill effective supervision for noise-robust model training.
- Significantly outperforms previous methods and sets new state of the arts on most benchmarks.

https://github.com/google-research/google-rese arch/tree/master/ieg