
OSVGAN: Generative Adversarial Networks for Data Scarce Online Signature 

Verification

Chandra Sekhar Vorugunti        Sai Sasikanth Indukuri           Viswanath Pulabaigari         Rama Krishna Sai Gorthi 

                 IIIT SriCity                      University of Massachusetts             IIIT SriCity                             IIT Tirupati 

             Chittoor-Dt, 517 646                     Amherst                            Chittoor-Dt, 517 646              Chittoor-Dt, 517 506  

           Andhra Pradesh, India               MA 01003, US.                   Andhra Pradesh, India.            Andhra Pradesh, India. 

         Chandrasekhar.v@iiits.in          sindukuri@umass.edu             viswanath.p@iiits.ac.in              rkg@iittp.ac.in 

 Abstract 

Impractical to acquire a sufficient number of signatures 

from the users and learning the inter and intra writer 

variations effectively with as minimum as one training 

sample are the two critical challenges need to be addressed 

by the Online Signature Verification (OSV) frameworks. To 

address the first challenge, we are generating writer specific 

synthetic signatures using Auxiliary Classifier GAN, in which 

a generator is trained with a maximum of 40 signature 

samples per user. To address the second requirement, we are 

proposing a Depth wise Separable Convolution based Neural 

Network, which results in achieving one shot based OSV with 

reduced parameters. A first of its kind of experimental 

analysis is done with an increased set of signature samples 

(five-fold) on two widely used datasets SVC, MOBISIG. The 

state-of-the-art outcome in almost all categories of 

experimentation confirms the competence of the proposed 

OSV framework and qualifies for the real time deployment in 

limited data applications. 

1. Introduction  

Signatures encompass an aggregation of individual 
writing characteristics which are a significant source of 
information to classify the genuineness of a user trying to 
login into the system. Based on the data acquisition, OSV 
systems are classified into offline or online [1,2,7,22,23]. In 
case of offline signatures, only the static information, i.e. X-
axis, Y-axis profiles are available in an image format for 
verification. In case of online signatures, as shown below, 
along with X, Y profiles, the dynamic information includes, 
the pressure, pen angle, tilt of a device, etc. Due to availability 
of both static (X, Y profile) and dynamic information, OSV 
frameworks tend to be more robust and accurate. 

 

TABLE I.   THE PARTICULARS OF WIDELY USED DATASETS IN OSV 

DataSet→ SVC MobiSig MCYT 

Total number of users 40 83 100 

Genuine, Forgery 

samples per user 

20,20 40,25 25,25 

In literature, several approaches towards online signature 

verification (OSV) had been detailed which can be primarily 

grouped into feature-centric techniques [13, 20] that interpret 

signatures using a collection of local or global features, 

function-centric techniques which apply distinct methods 

such as Hidden Markov models [1], Dynamic Time Warping  

(DTW)  [1,10,11], averaging time series [26], interval  valued  

[13,20], sequence matching [10,26], feature fusion based 

[13], fuzzy based [20], stroke based [18, 24], deep learning 

based [23,24,25,27] and many more. Recent works [32] 

confirms that, individual profiles (x, y, pressure, azimuthal) 

results into lightweight frameworks and higher classification 

accuracies compared to the compound signature. Hence, in 

this work, we focus on generating writer specific synthetic 

profiles to evaluate the genuineness of the test signature.   

 

Even though several OSV frameworks were proposed, still 

there is a shortfall in OSV systems addressing critical 

requirements:  R1. One/Few shot learning: A light weight 

OSV framework, which can effectively learn to classify a test 

signature, when trained with one signature sample per user. 

R2.  An OSV framework, must be tested with more signature 

samples, to be ratified to deploy in real time environment. 

Even though very few works are proposed to address R1 

[7,14,18,25], based on authors’ knowledge, no work is 

proposed to address R2, as acquiring a greater number of 

signature samples per user is impractical. As Table 1 suggests, 

maximum number of signature samples per user 40, which is 

very less compared to other computer vision problems like 

Object Detection [31] etc. Hence, to address the above two 

requirements, our contribution in this work is two-fold:  

 

1. As represented in Fig 1, a novel variant of Auxiliary 

Classifier-GAN (AC-GAN) based framework, which 

generates effective and unlimited writer specific synthetic 

signature samples.  

 

2. As represented in Fig 2, we propose a Depth Wise Separable 

Convolution (DWS) based OSV framework, through which 

we achieve one shot learning with reduced parameters 

compared to standard convolution based neural networks.  

2. Proposed OSV framework 

2.1 Synthetic Signature profile generation 

As depicted in Fig 1, 3 to generate high-quality writer 
specific synthetic signatures, we have proposed OSVGAN, 
which is a modified version of AC-GAN [5,28]. AC-GAN is 
widely used variant of vanilla GAN, in which, addition to the 
noise vector  ′𝑛′, a corresponding label, 𝑙 ∼  𝑃𝑙  is given as an 
input to the generator G to generate writer specific synthetic 
signatures 𝑆𝑠𝑦𝑛  =  𝐺(𝑙, 𝑛).   



Figure 1.  The Proposed OSVGAN architecture, which is a variant of Auxiliary Classifier GAN. 

Figure 2.  The Proposed Depth Wise Separable Convolution based Neural Network Architecture to classify a test signature. 

 

In vanilla GAN [3,4], Generator G, transforms a random 

noise ‘𝑛’ into a 1D vector (signature profiles) or 2D image i.e. 

𝑥𝐺  =  𝐺(𝑛). The noise ‘𝑛’ typically chosen from an easy-to-

sample uniform distribution, typically ‘𝑛’ ∼  𝑈(−1, 1). The 

generator aims to maximize the generated data (synthetic 

signature profiles) as similar as possible to the target data 

distribution (signature dataset).  

𝑃𝑑𝑎𝑡𝑎(𝑆𝐺) = ∫ 𝑃𝑑𝑎𝑡𝑎(𝑆𝐺 , 𝑛)
𝑛

= ∫ 𝑃𝑑𝑎𝑡𝑎(𝑆𝐺|𝑛).
𝑛

𝑃𝑛(𝑛)𝑑𝑛                              

                                                                                          (1) 

principally GAN attempt to learn a mapping from a basic 

latent distribution 𝑃𝑛(𝑛) to the complicated data distribution 

𝑃𝑑𝑎𝑡𝑎(𝑆𝐺|𝑛). Therefore, the joint optimization problem for 

the GAN can be represented as given below:  

𝑀𝑖𝑛𝐺 𝑀𝑎𝑥𝐷(𝑉(𝐺, 𝐷)) =  𝑀𝑖𝑛𝐺 𝑀𝑎𝑥𝐷(𝐸𝑥~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)]) 

+𝐸𝑧~𝑃𝑧[log (1 − 𝐷(𝐺(𝑧)))]                                           (2) 

 
An Auxiliary Classifier GAN [5], as depicted in Fig1, ‘𝐺’ 

takes as input both the class label ‘𝑐’ (in the signature context, 
genuine/forgery) and the noise ‘𝑛’  i.e. 𝑆𝑓𝑎𝑘𝑒 = 𝐺(𝑐, 𝑛). 
Similarly, the discriminator outputs the probability 
distributions over signature labels 𝐿𝑆  (genuine/forgery) and 
the class (writer) labels  𝐿𝑤  (writer id) i.e. 
𝑃(𝑆 | 𝑋), 𝑃(𝐿 | 𝑋)  =  𝐷(𝑋) . The discriminator’s objective 
function is represented as below:  

𝐿𝑆 =  𝐸[log 𝑃(𝑆 =  𝑟𝑒𝑎𝑙 | 𝑋𝑟𝑒𝑎𝑙)] +  𝐸[log 𝑃(𝑆 =  𝑓𝑎𝑘𝑒 | 𝑋𝑓𝑎𝑘𝑒)]       (3)         

𝐿𝑤  =  𝐸[𝑙𝑜𝑔 𝑃(𝐿 =  𝑤 | 𝑋𝑟𝑒𝑎𝑙)] +  𝐸[𝑙𝑜𝑔 𝑃(𝐿 =  𝑤 |  𝑋𝑓𝑎𝑘𝑒)]                  (4)  

 

The generator and the discriminator compete to maximize 𝐿𝑆 

- 𝐿𝑊 and 𝐿𝑆 + 𝐿𝑊 respectively. Recently, Swaminathan et al 

[4] proposed a novel attempt in which, to increase the 

modelling power of the prior distribution, they have 

reparametrized [6] the latent generative space of vanilla GAN 

into a set of Gaussian mixture models and learn the best 

mixture model specific to each writer. Motivated by 

Swaminathan et al [4] work, we have reparametrized the 

latent generative space of Auxiliary Classifier GAN into a set 

of mixture models and learn the best mixture model specific 

to each writer.      

𝑃𝑧(𝑧) = ∑ ∅𝑖 . 𝑔(𝑧|𝜇𝑔, ∑𝑔)𝐺
𝑔=1                                                    (5) 

 

where 𝑔(𝑧|𝜇𝑔, ∑𝑔) represents the probability of the sample z 

in the normal distribution N(𝜇𝑔, ∑𝑔). 

Assuming uniform mixture weights i.e. ∅𝑖 = 1/𝐺 

𝑃𝑧(𝑧) = ∑
𝑔(𝑧|𝜇𝑔,∑𝑔)

𝐺

𝐺
𝑔=1                                                         (6) 

 

Applying “reparameterization trick” [6] on equation (6), 

which divides the single Gaussian distribution into ‘𝐺’ 
Gaussian distributions. The noise from the ith Gaussian 

distribution is calculated using 𝑧 = 𝜇𝑖  + 𝜎𝑖 . 𝜖 , where ′𝜖′ 
represents an auxiliary noise variable such that, 𝜖  ∼ N (0, 1). 

𝜇𝑖 is a sample from a uniform distribution 𝑈(−1, 1) and 𝜎𝑖 is 

set to 0.4. User is advised to read [4] for further analysis.  

 

As depicted in Fig 2, a Gaussian random noise of size 5 is 

derived from the selected Gaussian distribution and the label 

embeddings are given as an input the Generator G. The 

generator generates the corresponding profile of an online 

signature of size 1*200, which is fed as an input to the 

discriminator ‘𝐷’, consists of a one-dimensional convolution 

layer, followed by three dense layers to classify the synthetic 

signature profile as real or generated. The generator is trained 

to generate the synthetic profiles close to the samples from 



Figure 3.  Comparing the real signature profiles (a: red) and the synthetic profiles generated by our proposed model (b:blue). 

 

the target space (signature dataset) through backpropagation 

of discriminator error in classifying the real and generated 

signature profiles. Fig 3, depicts the real and synthetic 

signature profiles generated by our proposed framework.  

2.2  Depth-Wise Separable (DWS) Convolution 

As depicted in Fig 2, the writer specific synthetic signature 

profiles generated by our proposed OSVGAN are used during 

the testing phase of our proposed DWSCNN. Recent works 

[25, 31], confirms that the DWS convolution outcomes, 

reduced parameters and operations by a factor of 1/𝑐 +
 1/(𝑁2)  compared to the standard convolution, where the  𝑐 

= number of input channels of an input signature and N = 

number of kernels. The model proposed in Fig 2 requires 

7,350 parameters, whereas the same model with standard 

convolutions requires 15,361 trainable parameters, which 

results in a deduction of 47.8% of trainable parameters by 

using DWS convolutions. DWS convolution is a set of depth-

wise convolution and 1×1 point-wise convolution on the 

outcome of depth-wise convolution (DWC).  

DepthWiseConv(I, K)(𝑥,𝑦) =  ∑ 𝐼(𝑥 + 𝑎, 𝑦 + 𝑏). 𝐾(𝑎,𝑏)
𝐴,𝐵
𝑎,𝑏       (7) 

 

In DWC, for each input channel ‘c’ , kernel K(a,b)  is 

convolved with an input image I(x,y)  to produce an 

intermediate result. For each input channel, a point wise 

convolution is carried out on the interim result as given 

below:  

PointWiseConv(I, K)(𝑥,𝑦) =  ∑ 𝑊(𝑐) × 𝑓(𝑥, 𝑦, 𝑐)𝐶
𝑐          (8) 

 As depicted in Fig 2, online signature is represented as a (1 

* 200 feature vector. If we substitute x = 1, a=1 and b =1, the 

above equations (7), and (8) represent an online signature 

which is of one-dimensional feature vectors. A batch 

normalization is applied on each layer output. A dropout of 

50%, 30%, 30% are applied at each DWS layer. The deep 

representation features captured by the DWS layers passed as 

an input to the dense layers for classification. A dropout of 

30%, 30% are applied at each dense layer. The final SoftMax 

layer classifies the test signature as genuine/forgery.   

3. Experimental Analysis 

To appraise our proposed OSVGAN, we have thoroughly 
evaluated our framework on two extensively used datasets i.e. 
SVC [5,12] and MOBISIG [20,21]. The experiments are 
conducted on Ubuntu based GTX1080 GPU machine with 20 
GB memory. The proposed framework is experimented with 
four categories of evaluation, i.e. Skilled_1 (S_01), Skilled_5 
(S_05), Skilled_10 (S-10) and Skilled_15 (S_15). 
Traditionally, if a dataset contains ‘G’ genuine and ‘F’ forgery 
signature samples per user, in Skilled_N category, for each 
user, ‘N’ samples of genuine and forgery are used for training 
and ‘G-N’ and ‘F-N’ samples are used to compute True 
Acceptance Rate (TAR) and False Acceptance Rate (FAR) per 
user and an Equal Error Rate (EER) is computed using 
Receiver Operating Curves (ROC). In this current work, 
similar to existing works, same number of training samples, 
i.e. (G-N) are considered to compute TAR. To compute, FAR, 
apart from (F-N) testing samples, hundred synthetic signature 
profiles are generated per user using proposed OSVGAN and 
a total of (F-N) +100 skilled forgery samples are used to 
compute FAR.  We have evaluated our framework using three 
types of testing samples. 1. Considering both AC-GAN 
generated synthetic signature samples and handcrafted 
features. 2. Considering only the AC-GAN generated 
synthetic samples and 3. Considering only the existing 
handcrafted features.   

      Evaluating the model with a greater number of signature 
samples per user, is a first of its kind of an attempt to address 
the requirement R1 discussed above. As illustrated in Tables 
II and III, the proposed OSVGAN realizes one shot learning. 
The frameworks which results in first highest EER is marked 
as * and the second highest is marked as **.  Even though, the 
proposed model is evaluated with more testing samples 
compared to the existing works, in case of SVC, the proposed 
framework realized state-of-the-art EER in S_01, S_10 and 
S_15 categories by yielding an EER of 2.86%, 1.42% and 
1.07% respectively. As illustrated in table III, in case of 
MobiSig, the proposed OSVGAN framework yields state of 
the art EER in all classes of experimentation. In S_01 (one 
shot learning), the framework achieves an EER of 5.17 with a 
handcrafted pressure profile.  



TABLE II.  COMPARISON OF EER (LOWER IS BEST) PERFORMANCE OF VARIOUS RECENT OSV FRAMEWORKS EVALUATED ON SVC DATASET 

TABLE III.  COMPARISON OF EER PERFORMANCE OF VARIOUS RECENT OSV FRAMEWORKS EVALUATED ON MOBISIG DATASET. 

Technique S_01 S_05 S_10 S_15 

Proposed Model : (GAN+ Handcrafted features): X-Axis 19.74 15.84 14.88 13.3 

Proposed Model : (GAN+ Handcrafted features): Y-Axis 17.65 15.01 14.62 13.56 

Proposed Model : (GAN+ Handcrafted features): Pressure 13.84 15.05 12.78 12.26 

Proposed Model : (Only GAN generated features): X-Axis 14.91 8.52 6.39 6.97 

Proposed Model : (Only GAN generated features): Y-Axis 12.78 6.44 5.87 5.68 

Proposed Model : (Only GAN generated features): Pressure 7.78** 6.5 2.42** 2.55** 

Proposed Model : (Handcrafted features): X-Axis 10.65 6.32 5.87 4.31 

Proposed Model : (Handcrafted features): Y-Axis 10.72 6.1* 4.91 4.27 

Proposed Model : ( Handcrafted features): Pressure 5.17* 6.21** 2.18* 2.14* 

Baseline [15] - 25.45, 19.27 - - 

Stroke-based RNN [24] 16.08, 16.261 - - - 

Recurrent Adaptation Networks [25] - 10.87 - - 

Figure 4.  A 2D-histogram representing EER registered for each user in case of SVC and Mobisig datasets under Skilled_1 category. 

Technique S_01 S_05 S_10 S_15 

Proposed Model : (GAN+ Handcrafted features): X-Axis 5.17 3.99 4.82 2.75 

Proposed Model : (GAN+ Handcrafted features): Y-Axis 4.78 4.2 3.27 2.12 

Proposed Model : (GAN+ Handcrafted features): Pressure 6.8 4.27 3.32 1.89 

Proposed Model : (Only GAN generated features): X-Axis 2.95 3.14 2.83 2.67 

Proposed Model : (Only GAN generated features): Y-Axis  2.86* 5.24 1.42** 1.76 

Proposed Model : (Only GAN generated features): Pressure 4.52 2.62 1.48 1.9 

Proposed Model : (Handcrafted features): X-Axis   2.87** 3.19 2.71 2.71 

Proposed Model : (Handcrafted features): Y-Axis 2.97 5.18 1.46 1.29** 

Proposed Model : ( Handcrafted features): Pressure 4.6   2.59** 1.23 1.07* 

SVM +SPW+ mRMR (10-Samples) [18] - - 1.00* - 

LCSS[10]  - - 5.33 - 

Relief-1 [17] - - 8.1 - 

SPW[18] - - 1.00* - 

PDTW(case 2) [22] - - - - 

Relief-2 [17] - - 5.31 - 

Stroke-Wise [16] 18.25 - - - 

PCA [16] - - 7.05 - 

TW [16] 18.63 - - - 

PDTW [22] - - - - 

Variance selection [17] - - 13.75 - 

Curvature +Torsion [21] - - 6.61 3.10 

DTW+ warping path score [11] - -  - 

RNN+LNPS [14] - 2.37* - - 

DTW[9] - 2.73 - - 

SynSig2Vec -Common Threshold [23] 11.96 4.65 - - 

SynSig2Vec – User Specific Threshold [23] 7.34 - - - 

Template matching + time-series averaging [26]  2.98 1.80  



Figure 4 depicts the EER yielded by the proposed 
framework for each user in Skilled_1 category of SVC and 
MobiSig dataset respectively in the form of a 2D-Histogram. 
Figure 4.a) depicts that the users from 5-10, 15-25, 27-32  
contributes to higher EER of the framework compared to 
others and the average EER varies between 10-15%. 
Correspondingly, Fig 4.b) delineates that users from 35-60 
contributes to higher EER of the framework and the average 
EER varies between 25 – 30%. 

4. Conclusion 

In this work, two most challenging requirements of OSV 
are addressed. First, data scarcity to thoroughly test the 
framework for real time deployment in critical applications. 
To address this, we have proposed a first of its kind of an 
attempt to generate virtually unlimited synthetic signature 
samples per user from a maximum of 40 signatures per user 
based on a modified version of AC-GAN. Second, achieving 
few shot learning, especially one-shot learning to classify the 
genuineness of test signature with as minimum as one training 
sample per user. The efficiency of the proposed model is 
confirmed through state-of-the-art achievement in various 
categories compared to the frameworks evaluated with 
reduced number of test samples. In future, to grasp the 
generative skills of GANs, we will focus on filling the missing 
and noisy parts of the signatures.  
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