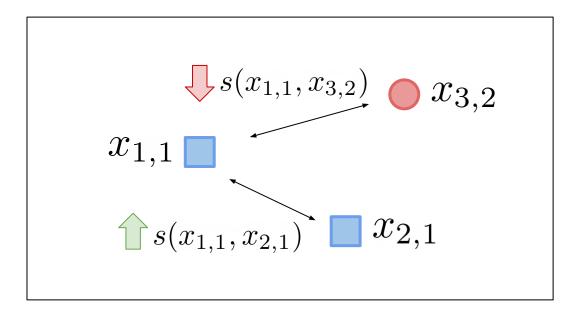


Smooth Proxy-Anchor Loss for Noisy Metric Learning

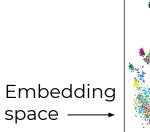
Carlos Roig, David Varas, Issey Masuda, Juan Carlos Riveiro, Elisenda Bou-Balust

Metric Learning - Introduction



 $x_{i,j}$: embedding *i* of class *j*

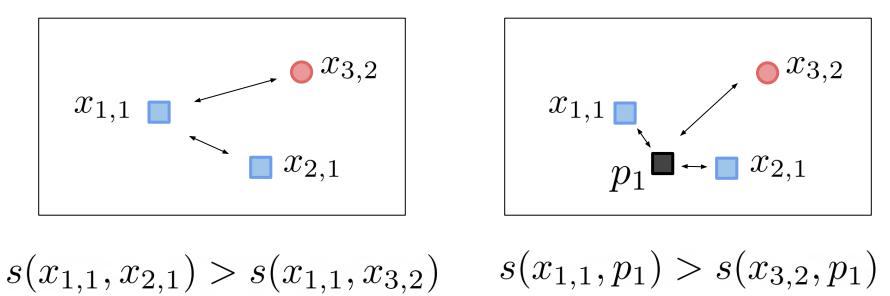
 $s(\cdot, \cdot)$: similarity function (e.g. cosine similarity)



Metric Learning - Pairs vs Proxy methods

Pair-based methods

Proxy-based methods



Metric Learning - Applications

Face Verification

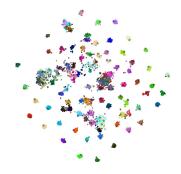
Person Re-Identification

Few-Shot Learning

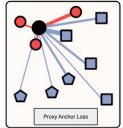
Content Based Image Retrieval

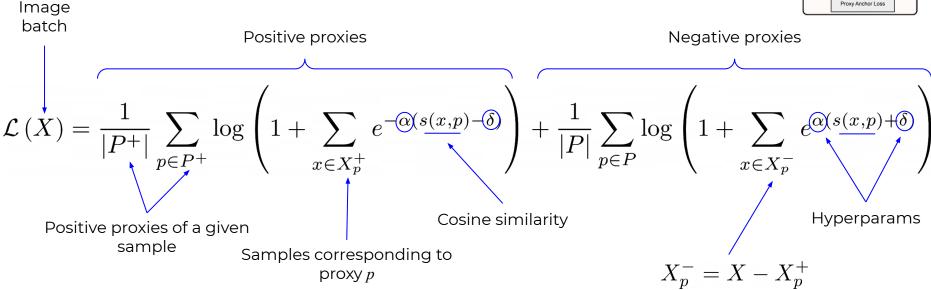
Representation Learning

Require clean data!



Proxy Anchor Loss



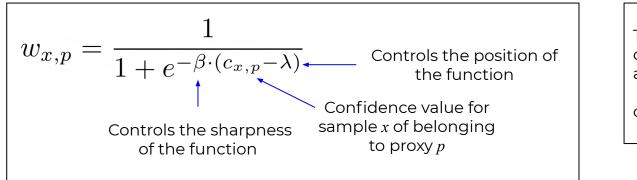


Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning, CVPR 2020.

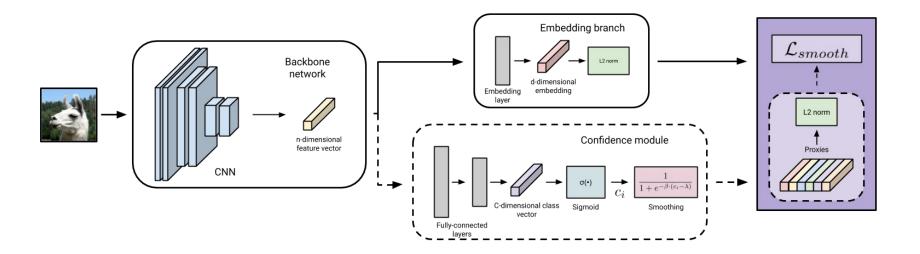
Smooth Proxy Anchor Loss

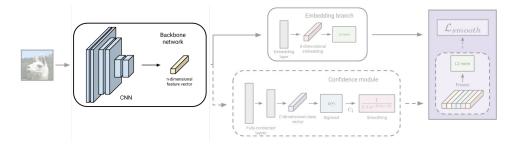
$$\mathcal{L}_{smooth}\left(X\right) = \frac{1}{|P^+|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} w_{x,p} \cdot e^{-\alpha(s(x,p)-\delta)}\right) + \frac{1}{|P|} \sum_{p \in P} \log\left(1 + \sum_{x \in X_p^-} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^-} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^-} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^-} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(s(x,p)+\delta)}\right) + \frac{1}{|P|} \sum_{p \in P^+} \log\left(1 + \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(x,p)}\right) + \frac{1}{|P|} \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(x,p)}\right) + \frac{1}{|P|} \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(x,p)}\right) + \frac{1}{|P|} \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(x,p)}\right) + \frac{1}{|P|} \sum_{x \in X_p^+} (1 - w_{x,p}) + \frac{1}{|P|} \sum_{x \in X_p^+} (1 - w_{x,p}) \cdot e^{\alpha(x,p)}\right)$$

Smoothing function

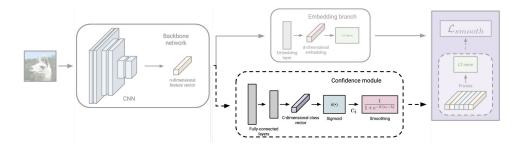


The positive samples X_p^+ corresponding to a proxy are selected if $c_{x,p} > \lambda$ otherwise, they are negative.





- Backbone: **ResNet50.**
- Pretrained on the **ImageNet** dataset.
- Without the classification layer.
- Frozen for all experiments.

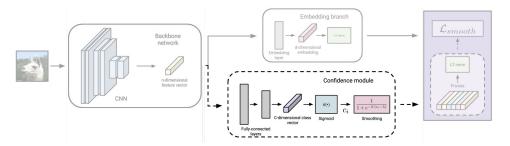


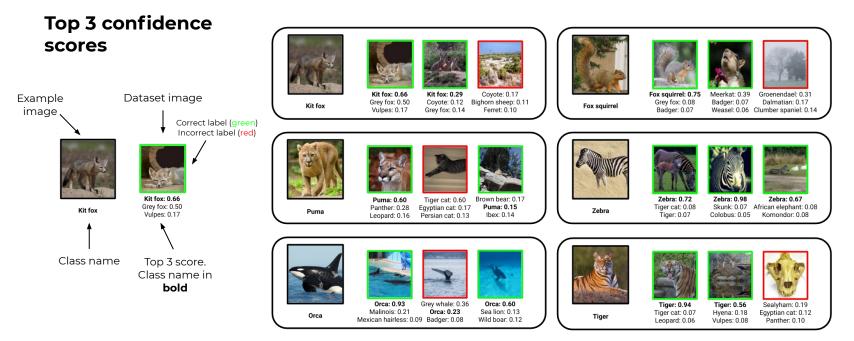
Trained with Binary Cross Entropy loss:

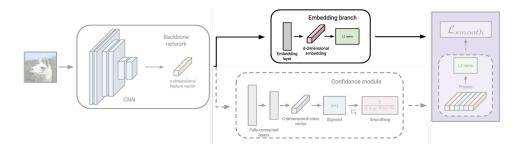
$$L(y, \hat{y}) = -\frac{1}{N} \sum_{i=0}^{N} (y * log(\hat{y}_i) + (1 - y) * log(1 - \hat{y}_i))$$

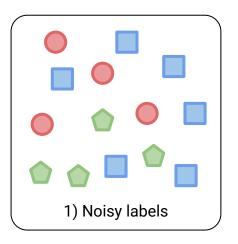
The confidence module generates the class confidences and the smoothing function balances each contribution.

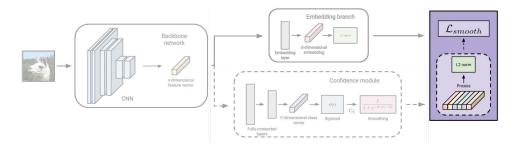
Dataset is a partition of the Webvision dataset*

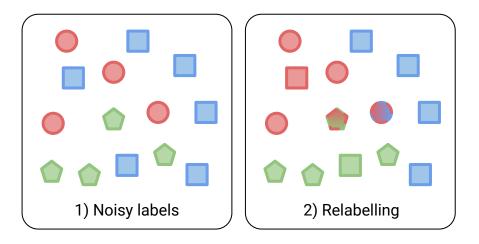


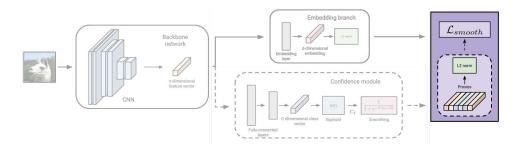


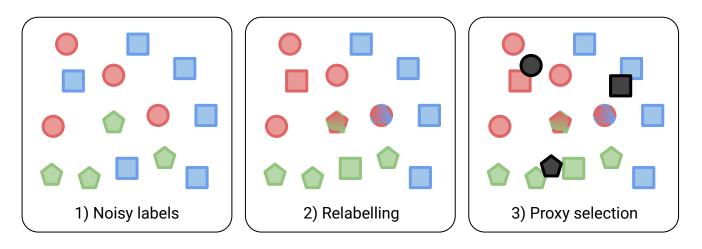


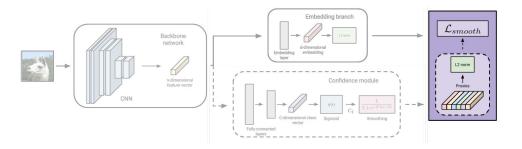


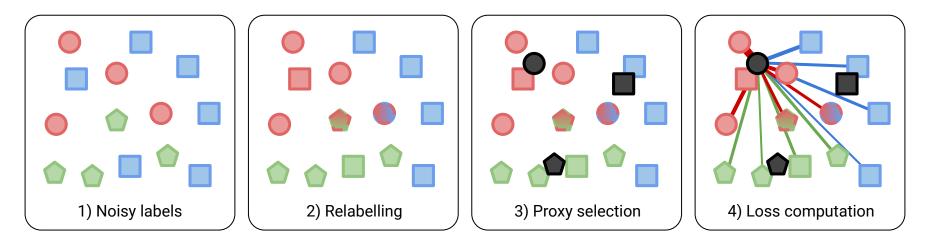












Results

Recall@K	1	2	4	8	16
Proxy-NCA [1]	65.89	75.70	82.36	87.51	91.56
Proxy-Anchor [2]	67.95	77.47	84.50	89.33	93.09
MultiSimilarity [3]	68.61	70.08	85.04	89.95	93.42
Ours	71.24	79.83	86.10	90.30	93.66

Table 3. Comparison of Recall@K for different methods against our proposed loss on the WebVision dataset partition.

[1] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Leung, Sergey loffe, and Saurabh Singh. *No fuss distance metric learning using proxies*, 2017

[2] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning, 2020

[3] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss with general pair weighting for deep metric learning, 2019

Conclusions

- Two branch system for noisy metric learning
 - Confidence module
 - Embedding
- We propose a Smooth Proxy Anchor Loss that weights the contribution of noisy samples
- Our method improves 2.63 and 3.29 in Recall@1 with respect to MultiSimilarity and Proxy-Anchor loss respectively

Thanks! carlos@vilynx.com

Get the paper!