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Introduction

Machine Learning in last two decades

VGGNet

Classification Tree,
Random Forest,
Deep Forest

SVM, Structured SVM, AlexNet

Bayesian SVM

Naive Bayes, Shallow Neural Networks
logistic Fisher Linear Discriminant .
1
1

regression

@

Image classification as one fundamental task in computer vision has been well
investigated for a long time. Benefiting from the development of deep learning, a
significant improvement have been achieved in many practical applications, e.g.,
clothing, food or car classification.

classification performance

1
1> 1 million
1

parameter size
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Introduction

Big and high quality data drives the success of deep
models.

IMAGENET

Image classn‘lcanon
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Classification error

Figure: There is a steady reduction of error every year in object classification on
large scale dataset (1000 object categories, 1.2 million training images)
[Russakovsky et al., 2015].

@ However, what we usually have in practice is big data with noisy
labels.
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Introduction

Noisy labels from crowdsourcing platforms.

CROWPSOURCING VALUE CHAIN
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Credit: Torbjgrn Marg

@ Unreliable labels may occur when the workers have limited domain
knowledge.
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Introduction

Noisy labels from web search/crawler.

Google  seguer g

Images

ey i m H m I

Screenshot of Google.com

@ The keywords may not be relevant to the image contents.
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Introduction

Noisy labels from implicit feedback.

@ Customers may accidentally miss some links in a quick browse.
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Introduction

Real-world Noisy Databases

Food101

dE% ] ClothingilM

YFCCI100M

There are almost inexhaustible noisy annotated images available on the social and
e-commerce websites at very low cost of human labor.
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Introduction

Processing Noisy Data

Bottleneck nnotation

Al
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clothing
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food diagnostic

Data Collection Worker Annotation Expert Validation

Considering the expensive human labor in the complex and arbitrary applications e.g.,
medical diagnostic and fine-grained visualization, collecting a large-scale dataset with
accurate annotations is usually impractical.
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Introduction

Deep Learning + Noisy Labels

lvor (UTS) Deep Learning with Noisy Supervision Jun 16th, 2019 10 / 70



Introduction

How to model noisy labels?

e Class-conditional noise (CCN):
Each label y in the training set (with c classes) is flipped into y with
probability p(y|y).
Denote by T € [0,1](¢*€) the noise transition matrix specifying the
probability of flipping one label to another, so that
VijTij = p(y =jly =i).

&
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Decision Boundary

Figure: Illustration of noisy labels.
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Introduction

What happens when learning with noisy labels?

Accuracy

0 20 40 60 80 100
Epoch(s)

Figure: Accuracy of neural networks on noisy MNIST with different noise rate (0.,
0.2, 0.4, 0.6, 0.8).
(Solid is train, dotted is validation.) [Arpit et al., 2017]

Memorization: Learning easy patterns first, then (totally) over-fit noisy
training data.

Effect: Training deep neural networks directly on noisy labels results in
accuracy degradation.
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Introduction

Deep Learning with Noisy Supervision

How to do in this area?

Three popular methodologies currently applied in this area.
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Introduction

Current Works

Current progress in three orthogonal directions:

@ Learning with noise transition:
Forward Correction (Australian National University, CVPR'17)
S-adaptation (Bar Ilan University, ICLR'17)
Masking (UTS, NeurlPS'18)

@ Learning with selected samples:
MentorNet (Google Al, ICML'18)
Learning to Reweight Examples (University of Toronto, ICML'18)
Co-teaching (UTS, NeurlPS'18)

@ Learning with implicit regularization:
Virtual Adversarial Training (Preferred Networks, ICLR'16)
Mean Teachers (Curious Al, NIPS'17)
Temporal Ensembling (NVIDIA, ICLR'17)
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Noise Transition

Estimating Noise Transition Matrix

@ Main idea: estimate the matrix and learn the classifier
@ Benefit: with theoretical guarantees

@ Drawback: hard to estimate the matrix for large-class cases

12. 5%
- 12. 5% -
(a) pair (e = 45%). (b) sym (e = 50%).

Figure: The noise transition matrix T, where T; = Pr(y = ey = ¢€').
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Introduction Noise Transition Dynamic Noise Deep Learning from Noisy Labels with Quality Embedding Co-teaching Co-teachir

Data Perspective

(a) Column-diagonal (b) Tri-diagonal (c) Block-diagonal

Figure: Three types of noise structure.

(a) beach <» mountain; beach <> dog.
(b1) Australian terrier <» Norwich terrier;
(b2) Norfolk terrier <+ Norwich terrier <> Irish terrier.

c) aquatic mammals <~ flowers; beaver <> dolphin.
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Noise Transition

Deficiency of Benchmarks

@@

Figure: Benchmark models. (x, ¥) denotes the instance with the noisy label.

@ Independent framework: the estimation is not for agnostic noisy data.

@ Unified framework: the brute-force estimation suffer local minimums.
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Noise Transition

Our Solution: Structure-aware probabilistic model

Figure: MASKING models the matrix T, where T; = Pr(y = e/|y = €'), by an
explicit variable s. Thus, we embed a structure constraint (h) on the variable s.

@ Human cognition masks the invalid class transitions.
@ The model focuses on estimating the noise transition probability.

@ The estimation burden will be largely reduced.
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Noise Transition

Straightforward Dilemma

@ In deep learning, hard to choose a distance measure (e.g., L2).

o Clean validation: repeat the training procedure to tune parameters.
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Noise Transition

When Structure Meets Generative Model

@ The latent ground-truth label y ~ P(y|x) (Categorical).

@ The transition s ~ P(s) and its structure s, ~ P(s,), where P(s) is
an implicit distribution modeled by DNN, P(s,) = P(s)dd—;
f(-) is the mapping function from s to s,.

so=f(s)"

@ The noisy label y ~ P(¥|y,s), where P(¥|y,s) models the transition
from y to y given s.
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Noise Transition

ELBO of MASKING

In P(7]x) > Eq(s) |In > P(7ly, s)P(ylx) —In | Q(so)/ @ :

Y structure prior so=f(s)

previous model

where Q(s) is the variational distribution to approximate the posterior of
the noise transition matrix s, and Q(s,) = Q(s)j—; s—f(s) 1S the

corresponding variational distribution of the structure s,.

MASKING benefits from the human guidance (the second term) in the
procedure of learning with noisy supervision (the first term).
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Noise Transition

Principled Realization

Q: Challenge from structure alignment.
A: GAN-like structure to model the structure instillation.

mem o
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Noise Transition

Datasets

Table: Benchmark CIFAR10 and CIFAR100; Industrial-level ClothinglM.

7 of training # of testing | # of class size
CIFARI10 50,000 10,000 10 32x32
CIFAR100 50,000 10,000 1000 32x32
ClothingIM | 1,000,000(N) + 5,000(C) 1,000 14 256 x 256

2035

Figure: Mislabeled images often share similar visual patterns in ClothinglM.
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Noise Transition

CIFAR10 and CIFAR100
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(a) Column-diagnoal (b) Tri-diagnoal (c) Block-diagnoal

Figure: The test accuracy vs iterations on benchmark datasets.
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Noise Transition

Clothing1lM

Table: Test accuracy on ClothinglM.

Models Performance(%)
NOISY 68.9
F-correction 69.8
S-adaptation 70.3
MASKING 71.1
CLEAN 75.2
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Dynamic Noise

LCCN

Motivation

One-step pre-estimation of noise transition.

deep neural "\ pre-estimated
networks 14 noise transition

Adapt the noise transition via the neural layer.

unstable

deep neural HN neural Softmax
networks : layer : Y

Issues: ignore the global dependency of noise transition.
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Dynamic Noise

LCCN

Latent Class-Conditional Noise Model

Reformulate original model.
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Dynamic Noise

LCCN

Dynamic Label Regression

Inference: Autoencoded Gibbs Sampling

-n
ay" + Nzn}’n

(o + k) ' (1)

Conditional transition

P(za|Z7", X, Y; a) x (z,,|x,,)

CIaSS|f|er encoder

Learning: Independent Optimization

{min - ZN 01(zn, P(zn|xn))
mln—fZ £2(Yn, P(yn|zn))-
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Dynamic Noise

LCCN

Guarantee

Theorem

Suppose a; is a positive smoothing scalar, N; is the current sample number of the ith
category (i=1,...,K), M; is the sum of the sample numbers newly allocated into
(positive) and removed from (negative) the ith category after a batch of training
samples, and M; is its absolute sum of such two cases. Then, for the transition vector i

of the ith category, its variation via a training batch is characterized by the below
inequality,

new old |ri‘ + E
& — b < 3
g — ) < LILET ©
M: ,\ M; o 8 _cno
where ri = ——=-— and rj = ——=L——. According to the definition, we have r; > —1
T NAT e T NAT o & ' R

ri>0and ¥ > |ri.
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Dynamic Noise

LCCN

lllustration

LCCN can be easily extended to the open-set noise setting and the
semi-supervised learning with the similar optimization.

gb —CY

N K + 1
The illustration of the extended training procedure.
classifier network LCCN /M\ noisy labels
classifier network ; |
Ry
‘l. Outlier  samplin : ‘ : ose
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LCCN

Experiments on toy datasets

Table: The average accuracy (%) over 5 trials on CIFAR-10 and CIFAR-100 with

different

Table: The average accuracy (%) over 5 trials on CIFAR-10 and CIFAR-100 with

Dynamic Noise

noise.
Dataset CIFAR-10 CIFAR-100

# | Method \ Noise Ratio | 0.1 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.4 0.5
1 CE 90.10 88.12 76.93 59.01 56.85 | 66.15 6431 60.11 51.68 33.37
2 Bootstrapping 90.73 88.12 76.29 57.04 56.79 | 66.48 64.61 63.01 55.27 34.52
3 Forward 90.86 89.03 8247 67.11 57.29 | 65.43 62.72 61.28 52.64 33.82
4 S-adaptation 91.02 88.83 86.79 7274 60.92 | 65.52 64.11 62.39 52.74 30.07
5 LCCN 91.35 89.33 88.41 79.48 6482 |67.83 67.63 66.86 6552 33.71
6 | CE with the clean data 91.63 69.41

different noise under the extended settings.

Dataset CIFAR-10 CIFAR-100
# | Method \ Noise Ratio | 0.1 0.3 0.5 0.7 0.9 0.1 0.2 0.3 0.4 0.5
1 CE 89.13 87.06 74.63 62.29 57.07 | 62.94 59.73 5471 4557 31.74
2 Bootstrapping 90.13 84.58 7476 54.87 55.56 | 63.73 60.88 59.77 40.23 31.86
3 Forward 88.63 84.97 78.47 5823 5652 |63.60 62.63 6186 51.47 35.71
4 S-adaptation 88.58 87.28 61.17 57.12 56.73 | 63.51 61.50 6059 53.22 32.19
5 LCCN 88.63 88.06 82.15 69.48 55.12 | 63.97 62.84 61.79 60.34 33.52
6 LCCN* 89.59 88.43 84.34 7233 56.28 | 64.71 63.05 62.48 62.02 32.37
7 00.30__88.03_ 88.2L 87.42_86.33 | 65.67 6424 63.52_ 63.19_62.39
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Dynamic Noise

LCCN

Experiments

0.95

0.85 //
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Figure: The test accuracy of LCCN and S-adaptation in the training on CIFAR-10
with r=0.5 and the corresponding histograms for the change of noise transition ¢
via a mini-batch of samples.

lvor (UTS) Deep Learning with Noisy Supervision Jun 16th, 2019 32 /70
/



Dynamic Noise

LCCN

Experiments

The transition learning in dynamic label regression.

SENwe o ®

The label inference in dynamic label regression.
1

4
©

label correction ratio
o
-]
:

e
N
\

o
o

0 20 40 60 80 100 120
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Dynamic Noise

LCCN

Experiments on ClothinglM

Table: The average accuracy over 5 trials on ClothinglM.

# ‘ Method ‘ Accuracy
1 CE 68.94
2 Bootstrapping 69.12
3 Forward 69.84
4 S-adaptation 70.36
5 Joint Optimization 72.16
LCCN 71.63
6 | LCCN warmed-up by ¢ in ? 73.07
LCCN* 72.80
7 CE on the clean data 75.28
8 Forward+ 80.38
9 LCCN+ 81.25
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LCCN

Experiments on ClothinglM

Dynamic Noise

The learned noise transition on ClothinglM by LCCN.
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Deep Learning from Noisy Labels with Quality Embedding

Quality Embedding

Composite reasoning way

The intuitive idea to deal with the residual noise effect.

JIael noise

model estimatiol -
ﬁ prediction

gtimation error

error ion for all mi: cat
@ < non-cat
(b error backpropagation for label noise # trustworthy

\
*x }"{ <+ non-trustworthy
qual
embeddi
* %\

model esti

edtimation error

< error i i resulted from label
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Deep Learning from Noisy Labels with Quality Embedding

Quality Embedding

Quality Augmented Probabilistic Model

Reformulate the original model.
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Deep Learning from Noisy Labels with Quality Embedding

Quality Embedding

Objective

The regularized objective

min [ = —Eq(z1x,y),q(slx.y) [InP(y|z,s)]

+ Dk [q(zlx, )l P(zx) | + Dk [q(s|x, y)I[P(s)]

classifier

- A (Eq(z|x,y) [In q(Z|Xa)/)] + Eq(s|x,y) [In q(s[x,y)]) .

variational mutual regularizer

This can be optimized by reparameterization tricks as VAE 7.
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Deep Learning from Noisy Labels with Quality Embedding

Quality Embedding

Contrastive-Additive Neural network (CAN)

The network implementation of the proposed model.

images

Additive
layer

—
(

classifier o2 1 o )
lvor (UTS) Deep Learning with Noisy Supervision Jun 16th, 2019

Y’ decoder

[ loss layer ]




Deep Learning from Noisy Labels with Quality Embedding

Experiments
On PASCAL VOC From Web Sources

Table: classification results on the 20 categories of VOC 07.

Model Resnet-N  LearnQ ICNM Bootstrap CAN
aeroplane 98.4 98.4 98.1 98.6 98.8
bicycle 81.1 83.8 82.9 84.1 84.1
bird 929 93.8 93.6 93.6 95.3
boat 88.7 88.5 88.9 90.9 93.2
bottle 57.0 53.5 53.4 56.3 62.1
bus 87.4 87.8 87.7 89.8 90.8
car 73.2 73.7 723 75.5 77.0
cat 96.6 96.5 96.2 96.3 97.9
chair 63.3 64.3 64.7 69.8 72.6
cow 90.0 90.6 91.2 91.6 94.4
table 63.9 62.6 66.3 69.9 73.5
dog 94.3 94.6 94.2 94.4 96.1
horse 95.0 96.1 96.2 95.8 97.7
motorbike 92.9 91.6 91.4 93.2 94.3
person 76.8 78.4 78.0 82.2 82.4
plant 438 46.8 44.0 43.2 455
sheep 92.9 92.8 93.5 92.8 95.8
sofa 67.2 69.0 69.3 70.9 71.4
train 93.1 94.0 94.4 95.4 95.8
tv 65.1 65.4 66.9 67.4 68.6
mAP 80.7 81.1 81.2 82.6 84.4
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Deep Learning from Noisy Labels with Quality Embedding

Experiments
On PASCAL VOC From Web Sources

Table: classification results on the 20 categories of VOC 12.

Model Resnet-N  LearnQ ICNM Bootstrap CAN
aeroplane 98.4 98.4 98.1 98.6 98.8
bicycle 81.1 83.8 82.9 84.1 84.1
bird 929 93.8 93.6 93.6 95.3
boat 88.7 88.5 88.9 90.9 93.2
bottle 57.0 53.5 53.4 56.3 62.1
bus 87.4 87.8 87.7 89.8 90.8
car 73.2 73.7 723 75.5 77.0
cat 96.6 96.5 96.2 96.3 97.9
chair 63.3 64.3 64.7 69.8 72.6
cow 90.0 90.6 91.2 91.6 94.4
table 63.9 62.6 66.3 69.9 73.5
dog 94.3 94.6 94.2 94.4 96.1
horse 95.0 96.1 96.2 95.8 97.7
motorbike 92.9 91.6 91.4 93.2 94.3
person 76.8 78.4 78.0 82.2 82.4
plant 438 46.8 44.0 43.2 455
sheep 92.9 92.8 93.5 92.8 95.8
sofa 67.2 69.0 69.3 70.9 71.4
train 93.1 94.0 94.4 95.4 95.8
tv 65.1 65.4 66.9 67.4 68.6
mAP 80.7 81.1 81.2 82.6 84.4
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Experiments
On Standford Dog Datasets From Crowdsourcing

Deep Learning from Noisy Labels with Quality Embedding

Table: Classification results on 4 categories of Standford Dog.

lvor (UTS)

Model nft nwt iwh swh mAP
MLP-N 781 732 809 765 77.2
LearnQ 80.5 73.7 83.0 777 787
ICNM 805 728 839 783 78.9
Bootstrap 80.7 725 83.7 78.1 788
CAN 82.0 79.0 818 838 8l1.7
Deep Learning with Noisy Supervision Jun 16th, 2019
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Deep Learning from Noisy Labels with Quality Embedding

Experiments
On Lambda

Results with different regularization coefficient A in CAN.

A 0 0.2 0.5 1 2 5 10
VO7TE 829 835 848 836 807 788 77.0
VI2TE 843 852 841 830 808 783 766
SD4TE 786 80.7 804 799 764 739 713

Classification results with different training sizes.

o VO7TE o V12TE SDATE
83

83 84

. ._.\.\.\. & 80
g 81 g 82 g 77
& & 81 &
¥ [ « oy | E W (En

79 3 80 Eas

78 79 7

77 78 68

1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2
training size (%) training size (%) training size (%)

J¥Resnet-N @MLP-N -LearnQ < ICNM #EBootstrap #CAN
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Deep Learning from Noisy Labels with Quality Embedding

Experiments

Classification with Controlable Noise

Dataset | Phoise 1.0 0.8 0.6 0.4 0.2 0.0
Resnet-N 6.4 334 530 702 782 86.8
LearnQ 91 280 564 720 80.1 854

VO7TE | ICNM 9.2 285 57 716 796 854
Bootstrap 89 30.1 593 733 81.0 855
CAN 86 361 632 794 836 853

Resnet-N 52 266 49.2 690 800 89.7
LearnQ 84 237 49.7 703 813 883

VI2TE | ICNM 84 238 496 705 814 883
Bootstrap 82 251 518 726 822 885
CAN 105 28.0 553 784 845 873

MLP-N 296 416 515 734 861 964
LearnQ 269 396 604 727 89.0 959

SDATE | ICNM 27.0 39.7 608 731 89.2 958
Bootstrap 27.8 38.6 587 735 893 96.2
CAN 30,1 497 639 771 91.1 943
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Experiments

Deep Learning from Noisy Labels with Quality Embedding

On Quality Embedding Visualization

lvor (UTS)
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Deep Learning from Noisy Labels with Quality Embedding

Experiments

On Conditional Transition

doghrsmbkprs pit
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Deep Learning from Noisy Labels with Quality Embedding

Experiments

Analysis of latent labels.

cow(chair)

bottle(plane)

motor(bike) _cat(bird) cat(boat) i sofa(cat) t(cow)
e = o

e

bike(train)

bottle(table) i i bus(sofa)

chair(tv)

Norfolk Terrier Norfolk Terrier Norwich Terrier Norwich Terrier Irish Wolfhound Irish Wolfhound  Scottish Wolfhound  Scottish Wolfhound
(Norfolk Terrier) (Norfolk Terrier) (Scottish Deerhound) (Norwich Terrier) (Irish Wolfhound)
3 25y

(Norwich Terrier)  (Norwich Terrier)

bird bottle
(boat) (person)

Norfolk Terrier Irish Wolfhound
(person) (Norwich Terrier) (Scottish Wolfhound)

Exemplars on latent label estimation of WEB dataset (the first two rows) and AMT dataset (the
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Co-teaching

A promising research line: Learning with small-loss
instances

@ Main idea: regard small-loss instances as “correct” instances.

Mini-batch 1, ((A)
1
et 1
Mini-batch 2 : o
1

Mini-batch 3 | o
|

| i (.

Figure: Self-training MentorNet[Jiang et al., 2018].

—— o ———

@ Benefit: easy to implement & free of assumptions.

@ Drawback: accumulated error caused by sample-selection bias.
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Co-teaching

A promising research line: Learning with small-loss
instances

Consider the standard class-conditional noise (CCN) model.
@ We can learn a reliable classifier if a set of clean data is available.

@ Then, we can use the reliable classifier to filter out the noisy data,
where “small loss” serves as a gold standard.

@ However, we usually only have access to noisy training data. The
selected small-loss instances are only likely to be correct, instead of
totally correct.

@ (Problem) There exists accumulated error caused by sample-selection
bias.

@ (Solution 1) In order to select more correct samples, can we design a
“small-loss” rule by utilizing the memorization of deep neural
networks?
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Co-teaching

Co-teaching: Cross-update meets small-loss

Co-teaching

P s e
( l \
Mini-batchl: o o :
| I

Mini-batch 2 |
ini-batc |

|
&
| |
Mini-batch 3 I‘ Q o :

Figure: Co-teaching[Han et al., 2018].
o Co-teaching maintains two networks (A & B) simultaneously.

@ Each network samples its small-loss instances based on memorization
of neural networks.

@ Each network teaches such useful instances to its peer network.
(Cross-update)
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Co-teaching

Co-teaching Paradigm

Input: wr and wg, learning rate 7, fixed 7, epoch Ty and Tiax, iter Nmax;
for T=1,2,..., Thax do
Shuffle: training set D; //noisy dataset;
for N=1,..., Nmax do

Draw: mini-batch D from D;

Sample: Dy = arg ming £(f, D, R(T)); //R(T)% small-loss;

Sample: D, = argming {(g, D, R(T)); //R(T)% small-loss;

Update: wr = wy — nVF(Dy); //update ws by Dy;

Update: w, = wgy — nVg(Ds); //update w, by Ds;
end

Update: R(T) =1—min {ler,r};
end
Output: wr and wg,

Algorithm 1: Co-teaching Paradigm.
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Divergence

Total Variation

Disagreement —— Co-teaching —— Co-teaching+

5 50 75 100 125 150 e 200
Epoch

@ Two networks in Co-teaching will converge to a consensus gradually.
@ However, two networks in Disagreement will keep diverged.
@ We bridge the "Disagreement” strategy with Co-teaching to achieve

Co-teaching+.
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Decoupling

Mini-batch 1 | o o I
Mini-batch 2 | o o '

Mini-batch 3 I o o I

____4

Figure: Decouplmg[MaIach and Shalev-Shwartz, 2017].
Easy samples can be quickly learnt and classified (memorization
effect).
Decoupling focus on hard samples, which can be more informative.
Decoupling use samples in each mini-batch that two classifiers have
disagreement in predictions to update networks.
(Solution 2) Can we further attenuate the error from noisy data by

utilizing two networks?
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How does Disagreement Benefit Co-teaching?

Co-teaching+

T
(8)
()

0.

Mini-batch 3 | 0 o

\

Mini-batch 1

(
|
I
]
Mini-batch 2 !
|
1

I
- e e e o
@ Disagreement-update step: Two networks feed forward and predict all
data first, and only keep prediction disagreement data.

o Cross-update step: Based on disagreement data, each network selects
its small-loss data, but back propagates such data from its peer
network.
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Co-teaching+ Paradigm

1: Input w(») and w(®, training set D, batch size B, learning rate n,
estimated noise rate 7, epoch Ex and Epay;

fore=1,2,..., Enax do

2: Shuffle D into % mini-batches; //noisy dataset

for n= 1,...,% do

3: Fetch n-th mini-batch D from D;

4: Select prediction disagreement D' = {(x;,y;) }7,-(1) # }7,-(2)};

5: Get D' = arg Mingy. 57y UD" w);  //sample \(e)%
small-loss instances N

6: Get D' = arg mingy. s a ey HD's w®);  //sample A(e)%
small-loss instances B

7: Update w) = w() — yvg(D'@); w);/ /update w®) by D',

8: Update w(® = w® — nv(D'D; w®);//update w® by D'();

end
9: Update A(e) =1 —min{£ 7,7} or 1 —min{£7, (1 + E:;EkEk)'r};
(memorization helps)

end
10: Output w® and w(?,
Co-teaching+: Step 4: disagreement-update; Step 5-8: cross-update.
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Relations to other approaches

Table: Comparison of state-of-the-art and related techniques with our
Co-teaching+ approach.

“small loss": regarding small-loss samples as “clean” samples;
“double classifiers”: training two classifiers simultaneously;

“cross update”: updating parameters in a cross manner;
“divergence”: keeping two classifiers diverged during training.

MentorNet | Co-training | Co-teaching | Decoupling | Co-teaching+
small loss v X v X v
double classifiers X v v v v
cross update X v v X v
divergence X v X v v
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Datasets for CCN model

Table: Summary of data sets used in the experiments.

# of train | # of test | # of class size
MNIST 60,000 10,000 10 28x28
CIFAR-10 50,000 10,000 10 32x32
CIFAR-100 50,000 10,000 100 32x32
NEWS 11,314 7,532 7 1000-D
T-ImageNet 100,000 10,000 200 64 %64
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Noise Transitions for CCN model

We manually generate class-conditional noisy labels using two types of
noise transitions:

12. 5%

12. 5%

Figure: Different noise transitions (using 5 classes as an example) [Han et al.,
2018].

(a) Pair (e = 45%). (b) Symmetry (e = 50%).
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Baselines

MentorNet: small-loss trick;

Co-teaching: small-loss and cross-update trick.
Decoupling: instances that have different predictions;
F-correction: loss correction on transition matrix;

Standard: directly training on noisy datasets.
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Network structures

Table: MLP and CNN models used in our experiments on MNIST, CIFAR-10,
CIFAR-100/ Open-sets, and NEWS.

MLP on MNIST

CNN on CIFAR-10

CNN on CIFAR-100/ Open-sets

MLP on NEWS

28x28 Gray Image

32x32 RGB Image

32x32 RGB Image

1000-D Text

Dense 28x28 — 256, ReLU

5x5 Conv, 6 ReLU
2x2 Max-pool

3x3 Conv, 64 BN, ReLU
3x3 Conv, 64 BN, ReLU
2x2 Max-pool

300-D Embedding
Flatten — 1000x300
Adaptive avg-pool — 16x300

5x5 Conv, 16 ReLU
2x2 Max-pool

3x3 Conv, 128 BN, ReLU
3x3 Conv, 128 BN, RelLU
2x2 Max-pool

Dense 16x300 — 4x300
BN, Softsign

Dense 16x5x5 — 120, RelLU
Dense 120 — 84, RelLU

3x3 Conv, 196 BN, ReLU
3x3 Conv, 196 BN, ReLU
2x2 Max-pool

Dense 4x300 — 300
BN, Softsign

Dense 256 — 10

Dense 84 — 10

Dense 256 — 100/10

Dense 300 — 7
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—— Standard —— Decoupling

(MNIST, Pair-45%)

(a) Pair-45%.
Figure: Test accuracy vs number of epochs on MNIST dataset.

lvor (UTS)

F-correction MentorNet

(MNIST, Symmetry-50%)

(b) Symmetry-50%.

—— Co-teaching —— Co-teaching+

Deep Learning with Noisy Supervision

(MNIST, Symmetry-20%)

(c) Symmetry-20%.
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CIFAR-10

—— Standard Decoupling F-correction MentorNet —— Co-teaching —— Co-teaching+

(CIFAR-10, Pair-45%) . (CIFAR-10, Symmetry-50%) (CIFAR-10, Symmetry-20%)

(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on CIFAR-10 dataset.
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CIFAR-100

—— Standard Decoupling F-correction MentorNet —— Co-teaching —— Co-teaching+
(CIFAR-100, Pair-45%) . (CIFAR-100, Symumetry-50%) . (CIFAR-100, Symmetry-20%)
R
: | :
& | &
(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on C/IFAR-100 dataset.
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Co-teachi

NEWS

—— Standard Decoupling F-correction MentorNet —— Co-teaching —— Co-teaching+

NEWS, Pair-43%) . (NEWS, Symmetry-50%) o (NEWS, Symmetry-20%)

(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure: Test accuracy vs number of epochs on NEWS dataset.
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T-ImagelNet

Table: Averaged/maximal test accuracy (%) of different approaches on
T-ImagelNet over last 10 epochs. The best results are in blue.

Flipping-Rate(%) Standard Decoupling | F-correction | MentorNet | Co-teaching | Co-teaching+

Pair-45% 26.14/26.32 | 26.10/26.61 | 0.63/0.67 | 26.22/26.61 | 27.41/27.82 | 26.54/26.87
Symmetry-50% | 19.58/19.77 | 22.61/22.81 | 32.84/33.12 | 35.47/35.76 | 37.09/37.60 | 41.19/41.77
Symmetry-20% | 35.56/35.80 | 36.28/36.97 | 44.37/44.50 | 45.49/45.74 | 45.60/46.36 | 47.73/48.20
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Open-sets

Open-set noise:
An open-set noisy label occurs when a noisy sample possesses a true class
that is not contained within the set of known classes in the training data.

Open-sets: CIFAR-10 noisy dataset with 40% open-set noise from
CIFAR-100, ImageNet32, and SVHN.

CIFAR-100 ImageNet32 SVHN

aw

Figure: Examples of open-set noise for “airplane” in CIFAR-10 [Wang et al.,
2018].

N
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Open-sets

Table: Averaged/maximal test accuracy (%) of different approaches on Open-sets
over last 10 epochs. The best results are in blue.

Open-set noise Standard | MentorNet | Iterative[Wang et al., 2018] | Co-teaching | Co-teaching+
CIFAR-10+CIFAR-100 62.92 79.27/79.33 79.28 79.43/79.58 | 79.28/79.74
CIFAR-10+ImageNet-32 | 58.63 | 79.27/79.40 79.38 79.42/79.60 | 79.89/80.52
CIFAR-10+SVHN 56.44 | 79.72/79.81 77.73 80.12/80.33 | 80.62/80.95
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Summary

Conclusion:
@ This paper presents Co-teaching+, a robust model for learning on
noisy labels.
@ Three key points towards robust training on noisy labels:

1) use small-loss trick based on memorization effects of deep networks;
2) cross-update parameters of two networks;
3) keep two networks diverged during training.

Future work:

@ Investigate the theory of Co-teaching+ from the view of
disagreement-based algorithms [Wang and Zhou, 2017].
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Papers and Codes

@ Masking: A New Perspective of Noisy Supervision. NIPS, 2018.

@ Co-teaching: Robust Training of Deep Neural Networks with
Extremely Noisy Labels. NIPS, 2018.

@ How does Disagreement Help Generalization against Label
Corruption? ICML, 2019.
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