# Every Coin Matters: Reweighting Everything for Large-scale Noisy Image Classification







# Outline

- □ Task & Challenge
- □ Our Solution
- □ Conclusion

# Task Description



Describe the task5,000 classes

| Name               |        | number of images |
|--------------------|--------|------------------|
|                    |        |                  |
| Train dataset      | Google | 8,366,429        |
|                    | Flickr | 7,710,236        |
| Validation dataset |        | 294,099          |
| Test dataset       |        | 294,099          |



- Class imbalance: unbalance data in different classes.
  - Motivates: reweighting Class





- Cluster Diversity: High inter-class similarity, low intra-class similarity.
  - Motivates: reweighting Cluster

Class: 973

Query words: icecream, ice+cream























- Lable Ambiguity: different classes, similar labels
  - Motivates: reweighting/smoothing label

Class:218 Label: revolver pistol

Horse. It may be class 331, 1044,....







Motorcycle. It may be class 2334

Jeep. It may be class 268, 563,...



- Noisy Instance: Positive instances are overwhelmed by massive noisy instances.
  - Motivates: reweighting Instance selection probability

Class: 1048 Label: ben







- Instance Saliency: Not all positive instance contribute equally
  - Motivates: reweighting positive instances inside a bag (attention).

Class: 0 Label: kit fox, vulpes macrotis



Do they make the **same** contribution?

# What if...





#### Baseline performance

| model      | Top1 accuracy | Top5<br>accuracy |
|------------|---------------|------------------|
| Resnext101 | 47.2%         | 71.7%            |



# Outline

- □ Task & Challenge
- Our Solution
- □ Conclusion

#### Motivation



unbalance data in different classes: reweighting class

High inter-class similarity, low intra-class similarity: reweight cluster

Label
Ambiguity:
reweighting
label

Noisy
Instance:
reweighting
Instance selection
probability

Not all positive instance contribute equally: reweighting positive instances inside a bag

#### Reweighting Class



Assigning loss weight of each class

$$ratio[i] = \frac{const}{count[train[i]]}$$
 
$$weight[i] = (1 - \partial) + \partial * \frac{ration[i]}{\sum_{j=1}^{total\_class\_num} ration[j]}, i \in [1, total\_class\_num]$$

#### Performance



#### Reweighting Cluster



Unsupervised learning: assigning weight by cluster density





 Step3: assign each cluster a sampling weight according to density

w1>w2>w3>w4>w5

## Reweighting Cluster



- Unsupervised learning: assigning weight by cluster density
- Performance



#### Reweighting Instance



Text-image correlated model structure



#### Reweighting Instance



How to train Text-image correlated model

Train a text-image correlated model Training loss:

```
Loss = \max(\cos(u_p, v_p) - \cos(u_p, v_n) + m), 0)
u_p : image feature
v_p, v_n : text feature
```

#### Step2



Pick Gallary image collection of high quality google images from each class, rank < 30 word2vec: fastText 300 CNN: Pretrained Resnext101

#### Step3

Score (reweight) the whole training dataset

# Reweighting Instance



#### Score results

Score in [0.9,1.0]













Score in [0.7, 0.8]













Score in [0.0,0.6]













#### Performance



#### Reweighting Bag-Specific Instance Saliency



Bag-instance learning structure



## Reweighting Bag-Specific Instance Saliency



#### Performance



#### Reweighting Label

#### bootstrapping

$$Loss(q,t) = \sum_{k=1}^{total\_cluass\_num} [Bt_k + (1-B)z_k] \log(q_k)$$

$$z_k = 1(k = \operatorname{argmax} q_i, i = 1, \dots, total\_class\_num)$$

Where  $\mathbf{z}_k$  is predicted label,  $t_k$  is ground-truth label, B=0.8.

#### Performance











#### **Train Dataset**



Reweighting Class

#### **Train Dataset**



Weight:0.6













Weight: 0.6 \* 0.5 \* 0.75 \* 0.7

# Training and testing tricks



| Tricks                                                          | Results    |
|-----------------------------------------------------------------|------------|
| Remove noise out of top 15                                      | +0.5% top5 |
| Training different models (eg. Resnet, DPN, etc) for ensembling | +1.3% top5 |
| Multi-crop testing                                              | +1.0% top5 |
| Multi-scale testing                                             | +0.5% top5 |



# Outline

- □ Task & Challenge
- Our Solution
- Conclusion

# The result



# Challenge Results

| Rank | Team name | Top-5 Accuracy (%) |
|------|-----------|--------------------|
| 1    | Vibranium | 79.25              |
| 2    | Overfit   | 75.30              |
| 3    | ACRV_ANU  | 69.56              |

## Future Work





## Our Team





Jianfeng Zhu



**Lele Cheng** 



**Ying Su** 



**Pengcheng Yuan** 



Lin Ye



**Shumin Han** 



Jia Li

Contact: hanshumin@baidu.com