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Large Scale Problem

• WebVision 2.0 Dataset:
– Noyse dataset generated from more than 12000 queries to Google image 

search and Flickr social media.
– It contains 5,000 visual concepts associated to synsets in ImageNet.
– It has more than 16 millions training images, 250 thousands validation 

images and 250 thousands test images (no public labels).
– It also provides additional information such as  title and description for 

Google images and title, description and tags for flickr images.
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Noisy Labels
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Imbalanced Class Distribution
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Approach
● Deep Learning Formula: Pretrain on large dataset and then finetune on a 

smaller task-specific dataset. Ex: object detection.
● Initialization is crucial to non-convex optimization problems such as 

learning deep models.
● Does a good start point provide robustness to noisy labels ?

[Exploring the Limits of Weakly Supervised Pretraining. Mahajan et al 2018]
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Self-supervised learning

● The main idea is to exploit supervisory signals, intrinsically in the data, 
to guide the learning process.

● In practice, we define a supervised proxy task, where labels are 
obtained with almost zero cost, to train the model before finetune for the 
target task.

[Doersch et al., ICCV 2015]

[Zhang et al., ECCV16]

[Fernando et al., ECCV16]
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Visual Permutation Learning (VPL)

We hypothesize that the model trained to solve such task is able to capture 
high-level semantic concepts, structure and shared patterns in visual data.

[DeepPermNet: Visual Permutation Learning. Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, Stephen Gould. In IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.]
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DeepPermNet

Remarks:
● We relax the inference over permutation matrices to inference over 

doubly-stochastic matrices (DSMs).
● We develop a neural network layer (Sinkhorn Layer) that approximates 

DSMs from CNN’s outputs.
● Incorporating the DSM structure in our predictors can avoid the 

optimizer from searching over imposible solutions.



www.roboticvisio
n.org

www.roboticvision.orgwww.rfsantacruz.com

Sinkhorn Layer

● Sinkhorn Normalization*: Any non-negative square matrix can be 
converted to a DSM by repeatedly rescaling its rows and columns.

● Function:

● Gradient (Row normalization):

*[Sinkhorn and Knopp 1967][Knight 2008][Adams and Zamel 2011][Mena et al. 2018]
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VPL Results

● It provides significant boost in performance compared to random 
initialization. 

● This framework also presents good results for learning-to-rank problems 
such as image ranking.

16% 6% 18%
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VPL on the WebVision
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VPL on the WebVision

Better Initialization
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Similar behavior is observed under different learning rate schedule.
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VPL on the WebVision

● We only achieved marginal improvements (< 1%) using visual 
permutation learning as pretraining procedure for the WebVision task.

● We can see significant improvements at the beginning of the training 
which is diluted as the training progresses, reaching similar 
performance after convergence. 

● It is still useful when you we need to train a model for few epochs.
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VPL Regularizer
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VPL Regularizer

● Pretrain in the visual permutation learning:
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VPL Regularizer

● Pretrain in the visual permutation learning:

● Finetune on the target task:
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VPL Regularizer

● Pretrain in the visual permutation learning:
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VPL Regularizer
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Base Classifier - DenseNet121

Training hyper-parameters

Hyper-parameter value Hyper-parameter value

Learning rate 0.01 Optimizer SGD

Lr. schedule Decay by 0.1 every 
6 epochs Momentum 0.9

Batch size 320 Weight Decay 1e-4
Num. epochs 20 Framework PyTorch
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Weighted Random Sampling

“The network often memorizes the category with more instances when 
trained on an extremely imbalanced dataset.“

Then, we adopted a weighted sampling strategy which the probability of a a 
image i been sampled is proportional to the inverse of its frequency,

where N is the total number of images and Nci is the number of images 
belonging to the same class of image i.
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Multiple Crops Prediction

+ Horizontal Flips + Resize (224px)

= 4 x 3 x (5 + 1) x 2 = 144 image crops
[Christian Szegedy et al. “Going deeper with convolutions”. In IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 2015 ]

5 image crops
1) Multiple Dimensions

2) Multiple Regions

3) Multiple Crops

320px

352px

256px

288px
320px

352px
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Results

Results on the Validation Set

Model Variation Top-5 Acc. (%)

DenseNet 121 + Center Crop 0.733

DenseNet 121 + 10 Crops 0.748

DenseNet 121 + 144 Crops 0.750

DenseNet 121 + Pretrain + 144 Crops 0.753
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Remarks

● We got the third-place in the competition scoring 69.56% in top-5 
accuracy on the test set.

● We are the only team in the top three not using ensemble of networks.

● We investigated Self-supervised pre-training as a tool to provide 
robust initialization for deep learning models.

● As recent papers suggest*, deep learning models seems to be 
reasonably robust to some types of label noise.

*[Rolnick et al. “Deep Learning is Robust to Massive Label Noise”.https://arxiv.org/abs/1705.10694]
*[Drory et al.  “On the Resistance of Neural Nets to Label Noise”. https://arxiv.org/abs/1803.11410]

https://arxiv.org/abs/1705.10694
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