

WebVision 2018

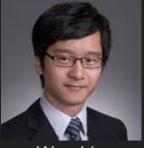
Visual Understanding by Learning from Web Data

Workshop Organizers

General Chairs

J. Berent

A. Gupta



R. Sukthankar

L. Van Gool

Program Chairs

Wen Li

Limin Wang

Wei Li

E. Agustsson

Thanks to Workshop Sponsors & Collaborators

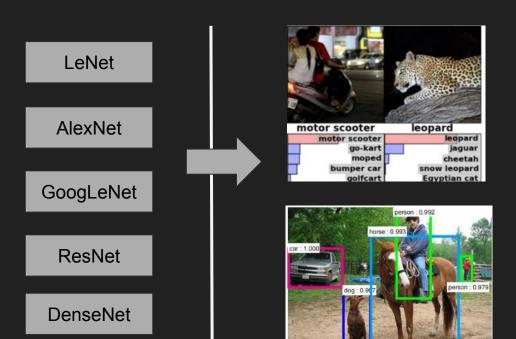
Dataset Collection & Challenge Hosting

Sponsor for Challenge and Award Collaborator in Challenge Organization

Carnegie Mellon University
The Robotics Institute

Collaborator in Challenge Organization

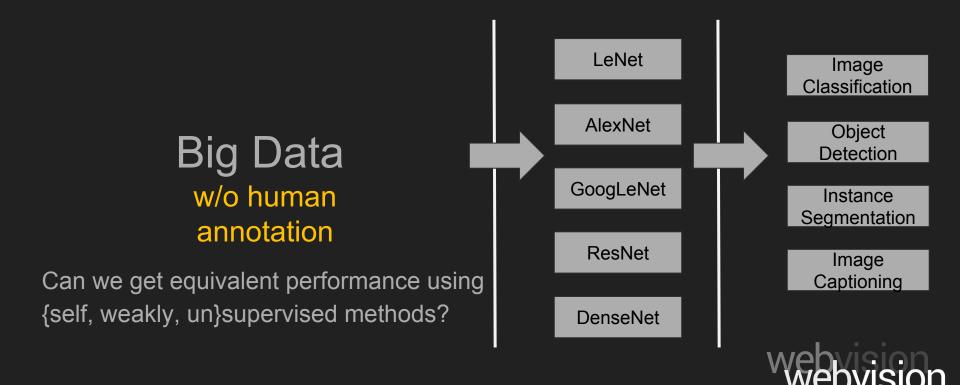
Program Schedule

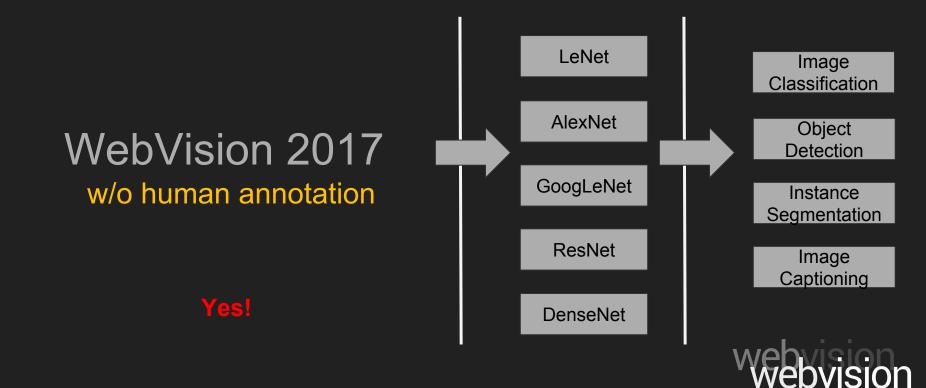

8:30	Opening Remarks
8:40	Invited Talk, Prof. Vittorio Ferrari (Google Research & Univ of Edinburgh)
9:20	Dataset/Challenge Overview
10:00	Coffee Break
10:20	Participant Presentation (Baidu Inc, and Beihang)
10:40	Participant Presentation (UESTC, Sensetime Research)
11:00	Poster Session (Poster Room)

14:00	Invited Talk, Prof. Jia Deng (Univ of Michigan)
14:40	Invited Talk, Prof. Boqing Gong (Tencent Al Lab / ICSI, UC Berkeley)
15:20	Participant Presentation (ACRV_ANU)
15:40	Award Session Closing Remarks

Deep Learning Revolution

Revolutionizing almost all fields of computer vision




Deep Learning Revolution

Powered by *human annotated* big data LeNet Image Classification AlexNet Object Detection GoogLeNet Instance Segmentation ResNet Image Captioning DenseNet

Deep Learning Revolution -- Our Hope

Deep Learning Revolution -- Last Year

Deep Learning Revolution -- This Year

LeNet **Image** Classification AlexNet Object WebVision 2018 Detection GoogLeNet w/o human annotation Instance Segmentation ResNet Image Captioning **Bigger than Bigger** DenseNet

Supervision using noisy & weak web signals

No human annotation is used

Learning from Web Data

Advantages

- ➤ No human annotation is needed for images
- Coarse semantic annotation generated from search engine or social signals
- Large number of images and classes
- High diversity (multiple sources)

Challenges

- Noisy Labels
- Domain Adaptation Issue
- How to use meta Information

Learning from Web Data

Recent Advance

- 1. D. Mahajan et al. Exploring the Limits of Weakly Supervised Pretraining. In arxiv, 2018.
- 2. C. Sun et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In ICCV 2017.
- 3. Y. Li et al. Learning from noisy labels with distillation. In ICCV 2017.
- 4. A. Veit et al. Learning From Noisy Large-Scale Datasets With Minimal Supervision. In CVPR 2017.
- 5. A. Joulin et al. Learning Visual Features from Large Weakly Supervised Data. In ECCV 2016.
- 6. S. Azadi et al. Auxiliary image regularization for deep cnns with noisy labels. In ICLR 2016.
- 7. X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In ICCV 2015.
- 8. T. Xiao et al. Learning from Massive Noisy Labeled Data for Image Classification. In CVPR 2015.
- 9. S. Sukhbaatar et al. Training convolutional networks with noisy labels. In ICLR 2015.
- 10. and more...

Lots of work but hard to compare methods & quantify progress in the field. Need for a common dataset and challenge

Workshop Contributions

WebVision 2018 dataset

- 5,000 categories
- Flickr & Google
- 16M images
- 250K validation images
- 250K test images

WebVision Challenge

WebVision Image
 Classification Track

Our Vision for WebVision

- Understand deep learning from web data by enabling direct comparisons to methods that trained on ImageNet data.
- Facilitate research on handling the challenges of learning from web data,
 e.g., label noise, class imbalance, meta-information
- Unite the research community to solve those challenges

Program Schedule

8:30	Opening Remarks
8:40	Invited Talk, Prof. Vittorio Ferrari (Google Research & Univ of Edinburgh)
9:20	Dataset/Challenge Overview
10:00	Coffee Break
10:20	Participant Presentation (Baidu Inc, and Beihang)
10:40	Participant Presentation (UESTC, Sensetime Research)
11:00	Poster Session (Poster Room)

14:00	Invited Talk, Prof. Jia Deng (Univ of Michigan)
14:40	Invited Talk, Prof. Boqing Gong (Tencent Al Lab / ICSI, UC Berkeley)
15:20	Participant Presentation (ACRV_ANU)
16:40	Award Session Closing Remarks

