Participant Presentation by VISTA

Yuncheng Li Snap Research

Outline

- Learning from noisy labels with distillation
- Our webvision challenge submission

Learning from Noisy Labels with Distillation (ICCV2017)

Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo and Li-Jia Li

Motivation

Learning from noisy labels

YFCC100M Dataset

- Yahoo Flickr Creative Commons 100M
- 100,000,000 Flickr photos
- Pixels and metadata:
 - User tags, machine tags, username, title, description, geo tags, device, date
- Visual concept learning with YFCC100M

Types of label noise

Traditional assumption: Random Classification Noise (RCN): Bird ⇒ Cat

In practice: text ambiguity

Related Work

Bootstrap Reed, et al. "Training deep neural networks on noisy labels with bootstrapping." *ICLR* 2014.

• Make prediction based on current model:

 $z_k := \mathbb{1}[k = \operatorname{argmax} q_i, i = 1...L]$

• Update with the modified labels:

$$\mathcal{L}_{hard}(\mathbf{q}, \mathbf{t}) = \sum_{k=1}^{L} [\beta t_k + (1 - \beta) z_k] \log(q_k)$$

Reweight Liu, et al. "Classification with noisy labels by importance reweighting." *IEEE TPAMI 2016*.

• Estimate noise level with a pretrained classifier $P_{D_{\rho}}(\hat{Y}|X)$

$$\rho_{-\hat{Y}} = \min_{X \in \mathcal{X}} P_{D_{\rho}}(\hat{Y}|X).$$

• Estimate instance importance: (how likely it is a noise sample)

$$\beta(X, \hat{Y}) = \frac{P_{D_{\rho}}(\hat{Y}|X) - \rho_{-\hat{Y}}}{(1 - \rho_{+1} - \rho_{-1})P_{D_{\rho}}(\hat{Y}|X)},$$

• Retrain the model with the weighted loss

 $\beta(X, \hat{Y})\ell(f(X), \hat{Y})$

Noise layer Sukhbaatar, et al. "Learning from noisy labels with deep neural networks." ICLR 2014.

• Add a new layer on top of softmax to "absorb" noise

Label smooth Szegedy, et al. "Rethinking the inception architecture for computer vision." ICLR 2015

• Modify the label map with smoothed version:

Original label map	0	0	0	1	0	0	0	0	0	0
Smoothed label map	0.01	0.01	0.01	0.91	0.01	0.01	0.01	0.01	0.01	0.01

Just do it! Krause, Jonathan, et al. "The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition." *ECCV 2016*.

- Two kinds of noise
 - Cross domain noise
 - Cross category noise
- The cross domain images are not shown in the evaluation
 - \circ $\,$ $\,$ This is true only for fine grained classification $\,$

Our work

Contributions

- 1. Learning with knowledge graph to handle label noise
 - a. Noise caused by the text ambiguity
 - b. Generic visual classifier
- 2. A new dataset to benchmark learning from noisy labels
 - a. Real-world label noise

Phylogenetic Tree of Life

Semantic knowledge graph

Class: Bird

Hummingbird, Ostrich, Tanager, Ruff, Willet, Darter, ...

Visual knowledge graph

Abalone

Mussel

Scallop

A motivating example

Willet

There is no way to get rid of the ambiguity by itself

Dunlin

Greylag_goose

Examples of Distillation

Teacher CNN	Student CNN	Reference		
Expensive strong CNN ensemble	Deployable weak CNN	Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." <i>arXiv preprint arXiv:1503.02531</i> (2015).		
Privileged features	Generic features	Lopez-Paz, David, et al. "Unifying distillation and privileged information." <i>arXiv preprint arXiv:1511.03643</i> (2015).		
Small set of clean labels	Large set of noisy labels + Knowledge graph	Ours		

Knowledge Graph Guided Distillation

 $s \equiv \tilde{s} \times T$

$$f_{s} = \operatorname*{arg\,min}_{f \in \mathcal{F}_{s}} \frac{1}{n} \sum_{i=1}^{n} \left[(1-\lambda)\ell(y_{i}, \sigma(f(x_{i}))) + \lambda\ell(s_{i}, \sigma(f(x_{i}))) \right],$$

$$\left(1 - \beta \right)$$

$$T(m,n) = \begin{cases} 1-\beta & m=n\\ \frac{\beta}{|\text{sibling}(n)|} & m \in \text{sibling}(n)\\ 0 & \text{otherwise} \end{cases}$$

Knowledge Distillation == Risk Hedging

 $\hat{y}_i^{\lambda} = \lambda y_i + (1 - \lambda) s_i$

Proposition 1. The optimal risk associated with \hat{y}^{λ} is smaller than both risks with y and s, i.e.

$$\min_{\lambda} R_{\hat{y}^{\lambda}} < \min\{R_y, R_s\},\tag{7}$$

where y is the unreliable label on \mathcal{D} , and s is the soft label output from f_{D_c} . By setting $\lambda = \frac{R_s}{R_s + R_y}$, $R_{\hat{y}^{\lambda}}$ reaches its minimum,

$$\min_{\lambda} R_{\hat{y}^{\lambda}} = \frac{R_y R_s}{R_s + R_y}.$$
(8)

Guided Knowledge Distillation: Collaborative Ensembling

Assumption: correlation between classifiers connected on knowledge graph.

S≡Ŝ×T

	Ŝ(Willet)	Ŝ(Dunlin)	Ŝ(Wader)	Ŝ(Ruff)	S(Willet, 0.5)
Willet: the name	0.9	0.0	0.0	0.0	0.45
Willet: the bird	0.9	0.6	0.8	0.7	0.80

S(Willet, β) = β Willet + (1- β)/3 * (Dunlin + Wader + Ruff)

Knowledge Graph

- Semantic knowledge graph
 - Wikipedia/DBPedia/Yago/Probase
- Visual knowledge graph
 - Manual labeling (linear scalable)

Bird

1. Great blue heron
2. Barn owl
3. Yellowhammer
4. Common buzzard
5. Sandpiper
6. Eurasian nuthatch
7. Eurasian teal
8. American oystercatcher
9. Hooded crow
10. Song thrush
11. Loggerhead shrike
12. Purple heron
13. Semipalmated plover
14. Canvasback
15. Yellow-eyed penguin
16. California towhee
17. Yellowthroat
18. Petrochelidon
19. Western tanager
20. <u>Pluvialis</u>
21. Bowerbird
22. Red-throated loon
23. Scaly-breasted munia
24. Chinese pond heron
25. Nankeen kestrel
26. <u>Remiz</u>
27. Southern cassowary
28. Winter wren
29. Curve-billed thrasher
30. White-faced whistling duck
31. Anodorhynchus
32. Perisoreus
33. Hooded oriole
34 Southern masked weaver

Experiments

Data collection

• Data collection pipeline

- Difference from WebVision
 - Images are collected in bottom-up fashion
 - Noisy images are kept in test set (background images)
 - mAP, instead of top-K, is used as metric

Aphid

Epiphyllum

Datasets Statistics

Name	#Categories	#Train	#Dev	#Test
Sports	238	86K	18K	52K
Species-Y	219	50K	10K	28K
Species-I	219	93K	14K	40K
Artifacts	323	112K	16K	48K

Benefits of the additional noise labels (Cross Entropy)

Compared benchmarking methods

- Cross Entropy (CE), Krause, et al. ECCV 2016
- Bootstrap, Reed, et al. ICLR 2014
- Label Smooth, Szegedy, et al. ICLR 2015
- Reweight, Liu, et al. TPAMI 2016
- Ours
 - Distillation (DT)
 - Semantic Knowledge Guided Distillation (S-DT)
 - Visual Knowledge Guided Distillation (V-DT)

Dev set learning curve (P%=20%)

Results with different ratios of clean data

Rank images with baseline model output

The CNN itself is hard to get rid of the "Willet, the name" concept

Rank images with guided distillation

With the aid of the knowledge graph, the concept "Willet, the name" is removed

More results

	Sports	Species-Y	Species-I	Artifacts
Baseline-Clean	44.0	18.1	22.0	19.2
Baseline-Noisy [10]	50.7	23.7	38.5	22.0
Baseline-Ensemble	52.2	25.1	39.1	26.9
Bootstrap [16]	50.6	23.6	38.8	23.4
Label Smooth [19]	51.9	25.1	41.4	22.9
Finetune	50.8	22.2	37.5	19.7
Noise Layer [18]	50.8	23.7	38.5	22.0
Importance Re-weighting [12]	50.8	23.7	41.6	24.8
Distillation (Eqn. (4))	53.5	26.1	41.6	26.0
Semantic Guided Distillation (Eqn. (13))	53.7	25.2	42.3	26.0
Upper Bound	54.1	27.4	-	-0

Future work

- Learn visual knowledge from data
- Knowledge graph for larger-scale datasets

VISTA Team Submission

Yuncheng Li, Jianchao Yang Snap Research

Learning rate scheduling

Decay 0.94 at every 2 epochs, stop when validation accuracy converge

- Scratch: base-lr= $0.01 \Rightarrow 0.81$ (top-5)
- Finetune: base-lr=0.001 \Rightarrow 0.85
- Finetune: base-lr=0.0001 \Rightarrow 0.89
- Finetune: base-lr=0.00001 \Rightarrow 0.89

"Negative results"

- Bootstrap
- Label smooth
- Subset bootstrap
- Co-training
 - Iterate between text and image classifier training

More details

- Inception-v3
- 4 GPUs
- Tensorflow https://github.com/tensorflow/models/tree/master/slim

Take home message

- Carefully learning rate scheduling is more important
 - "Label noise is fine, just makes the learning slower"
- Conjecture: Using larger model to absorb noise works just fine.