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Recipe for Success (in Deep Learning era)
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Recipe for Success (in Deep Learning era)
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Recipe for Success (in Deep Learning era)
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Curious Case of Vision Datasets
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Revisiting Unreasonable Effectiveness of

Data in Deep Learning Era
Joint work with Abhinav Shrivastava, Saurabh Singh and Abhinav Gupta
ICCV 2017 (arXiv)
(Carnegie

Mellon

University
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https://arxiv.org/abs/1707.02968

JFT-300M Dataset

e 300M web images
e 375M image label pairs

Previous publications on JFT:
e F. Chollet, Xception: Deep learning with depthwise separable convolutions. CVPR 2017
e G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. NIPS 2014.
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JFT-300M Dataset

e 300M web images
e 375M image label pairs
e ~ 19K categories
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JFT-300M Dataset

Google

300M web images
375M image label pairs
~ 19K categories

~ 20% label noise
Unknown recall
Long-tail distribution

Tortoise:
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Training on JFT-300M

e Deep residual networks (ResNet-50 / 101 / 152)
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Visualization of a 34-layer ResNet

K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, CVPR 2016.
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Training on JFT-300M

Deep residual networks (ResNet-50 / 101 / 152)
50 K80 GPUs for 1.5 months
4 epochs (ImageNet is trained for 100 epochs)

Async SGD | | | |

5000M  10.00M  1500M  20.00M  2500M  30.00M
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Empirical Study of JFT-300M Models

e Transfer the learned representations
o Avoid potential bias of JFT-300M validation set
o Common benchmark as ImageNet

Related work:
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image
representations using convolutional neural networks. In CVPR, 2014.
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Transfer the Learned Representations
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EEd o ol oK abels

@ Transfer weights

QOutputs: b b ox
softmax regressor

&5 PASCAL2

‘ Pattern Analysis, Statistical Modelling and :I: Besd FC
Computational learning .
) LB iyl Detections
Common Objects in Context

Rol feature
feature map vector

For each Rol

GOOQ'G Confidential + Proprietary



Empirical Study of JFT-300M Models

e Transfer the learned representations
o Avoid potential bias of JFT-300M validation set
o Common benchmark as ImageNet
e Verified on:
o Object detection, semantic segmentation, human pose
estimation
o Frozen feature bottom v.s. Fine-tuning all layers
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Better Representation Learning Helps!

Huang et al., Speed/accuracy
trade-offs for modern convolutional

mAP vs. Date of test-dev server submission object detectors. CVPR 2017.
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Better Representation Learning Helps!
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Using a JFT-300M
pre-trained checkpoint
to replace ImageNet
ones:
e 2.7% gain over
best single model
e 3.1% gain over
comparable
ResNet model
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Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

e 2% ImageNet top-1 classification accuracy

Initialization Top-1 Acc. | Top-5 Acc.
MSRA checkpoint [ 6] 76.4 92.9
Random initialization 717.5 03.9
Fine-tune from JFT-300M 79.2 94.7
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Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

e 2% ImageNet top-1 classification accuracy
e 3.1% mAP COCO object detection

Method mAP@0.5 | mAP@[0.5,0.95]
He et al. [16] 53.3 322
ImageNet 53.6 34.3
300M 56.9 36.7
ImageNet+300M 58.0 374
Inception ResNet [ 7] 56.3 35.5
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Better Representation Learning Helps!

Absolute gains over ImageNet pre-training:

Google

2% ImageNet top-1 classification accuracy
3.1% mAP COCO object detection

4.8% mAP (50% 10U) VOC 07 object detection
3% mIOU VOC 12 segmentation

2% AP COCO keypoint detection
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Performance v.s. Data Size
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e Log-linear with number of training images

e No saturation even at 300M scale
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Performance v.s. Depth
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e Deeper models are better with more data
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Comparison with Previous Work

e Oquab et al. showed that careful selection is heeded when

using more ImageNet images for training.
o Manual selection is not needed on JFT-300M

e Joulin et al. found saturation effect at T00M scale.

o Only uses Flickr images.
o Shallower model: AlexNet (v.s. ResNet)

M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations

using convolutional neural networks. In CVPR, 2014.
Armand Joulin, Laurens van der Maaten, Allan Jabri, Nicolas Vasilache. Learning visual features from large

weakly supervised data. In ECCV, 2016.

Google M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet good for transfer learning? arXiv:1608.08614 ... . ropicay



Just Memorizing All Test Images?

e Deduplication between JFT-300M and target test data
e 10% overlap with ImageNet validation, 4% overlap with
Pascal VOC test
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Just Memorizing All Test Images?

e Deduplication between JFT-300M and target test data
e 10% overlap with ImageNet validation, 4% overlap with

Pascal VOC test
e No significant change after removing the duplicates during

evaluation
e Fun fact: 1.8% overlap between ImageNet training and

validation
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Rethinking the principles for CNN design

e Novel architectures at 300M scale
o Deeper models perform better on JFT-300M
o Deeper or wider?
e Our results show the lower bound for JFT-300M’s power
o Architectures were designed for ImageNet
o Hyperparameter search is limited

F. Chollet, Xception: Deep learning with depthwise separable convolutions. CVPR 2017

GOOgle Confidential + Proprietary



Take home messages

e Representation learning helps

e Performance grows log-linearly with the number of training
images

e Deeper models are needed to fully utilize large-scale data
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Next steps

e Further expanding the size of training data
o 1 billion images?

e Unsupervised and semi-supervised training

e Generic representation v.s. Task specific
o Plateauing effect for task-specific data or not?
o Task-specific data is more difficult to obtain
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Task-specific Data
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Figure credit: X. Chen, A. Shrivastava and A. Gupta, Enriching Visual
Knowledge Bases via Object Discovery and Segmentation. In CVPR 2014.
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Task-specific v.s. Domain-specific (Web)

e Task-specific data
o Full supervision
o Smaller scale

e Web data
o Weak supervision
o Large scale
o Domain bias
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Web Constraints Make Localization Easier!

Average Image

Learned Prior

Example ages

S

Learned Detetor Example Images

Learned Detector

Figure credit: X. Chen, A. Shrivastava and A. Gupta, Enriching Visual
Google Knowledge Bases via Object Discovery and Segmentation. In CVPR 2014.
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Weakly-supervised Object Detection

TV, clock, book, scissors, couch,
telephone, cup

cle, umbrella, car, person,
motorcycle

Weakly supervised object detection (WSOD):
Learn to localize objects (bounding boxes) using
image-level labels

Horse, teddy bear

Donut, pizza
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Constraint-transfer for Weakly Supervised Object Detection

Joint work with Senthil Purushwalkam and Abhinav Gupta
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Domain Transfer Between (Web) Images and Videos

Temporal localization of fine
grained actions in videos by domain
transfer from web images.

ACM Multimedia 2015

Joint work with Sanketh Shetty,
Rahul Sukthankar and Ram Nevatia.
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Temporal Localization of Actions

B ground truth 1 sliding window prediction [l location refinement

Figure credit: Gao et al., TURN TAP: Temporal Unit Regression Network for

Google Temporal Action Proposals. In ICCV 2017.
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Weakly-supervised Temporal Localization

e A video typically contains multiple instances of different
actions

e Only video-level labels are known, not temporal boundaries
are given

e For sports, many “fine-grained” actions with similar
background

Google
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Baseball
+

Pitch
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Localized
action
highlights

Irrelevant
images
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Assumption 1:
Video frames and web
images which correspond to
the action are visually similar
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Assumption 2.
Distributions of non-action
frames and web images are
usually very different
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LAF scores

[[0.1 .. 0.702..]

Training videos with LAF scores
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Mutual Voting between Images and Video Frames
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Webly-supervised Video
Recognition by Mutually

—= Voting for Relevant Web Images

and Web Video Frames.
ECCV 2016

‘Joint work with Chuang Gan, Lixin
~ Duan and Boging Gong.
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Three Ways to Use Web-scale Images

Google

Representation Learning
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Three Ways to Use Web-scale Images

Google

Representation Learning

Cross-domain Constraints

Web Images

Minimal
Clutter

Noisy
Labels

Unlike
Target
Domain

Pascal VOC Images
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Size
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Three Ways to Use Web-scale Images

Representation Learning YUII

Cross-domain Constraints

Cross-modal Constraints
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Conclusions

e Web-scale images (300M) help visual representation
learning

e Novel architectures should be explored to handle web-scale
data

e Domain-specific web images provide useful constraints for
weakly-supervised learning
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