

Efficient Solution to Large-scale Image Classification

Presenter: Chenhao Lin
Team: BigVideo

Team: BigVideo

Team Member:

Huabin Zheng

Litong Feng

Yuming Chen

Weirong Chen

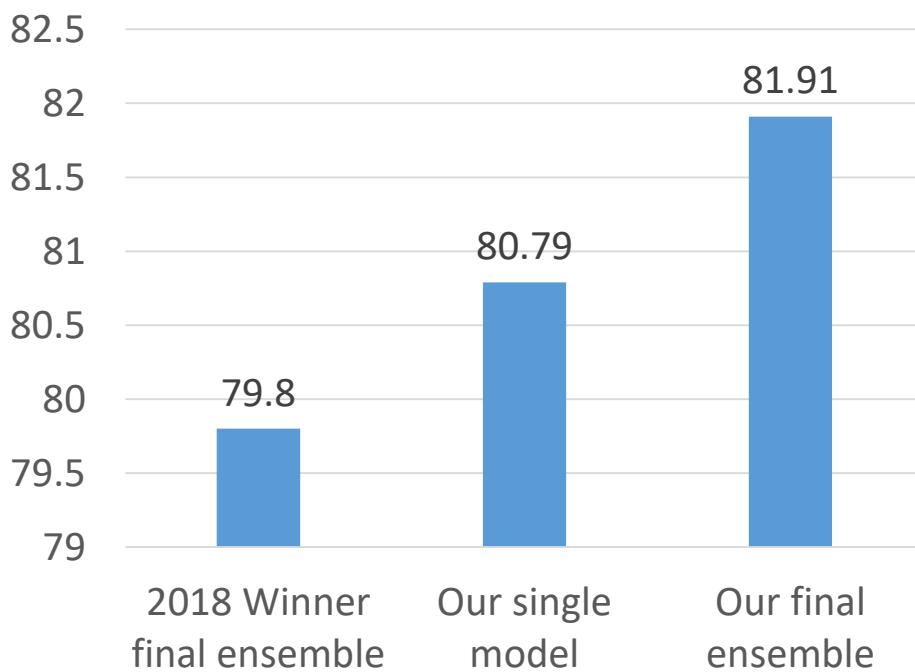
Zhe Huang

Zhanbo Sun

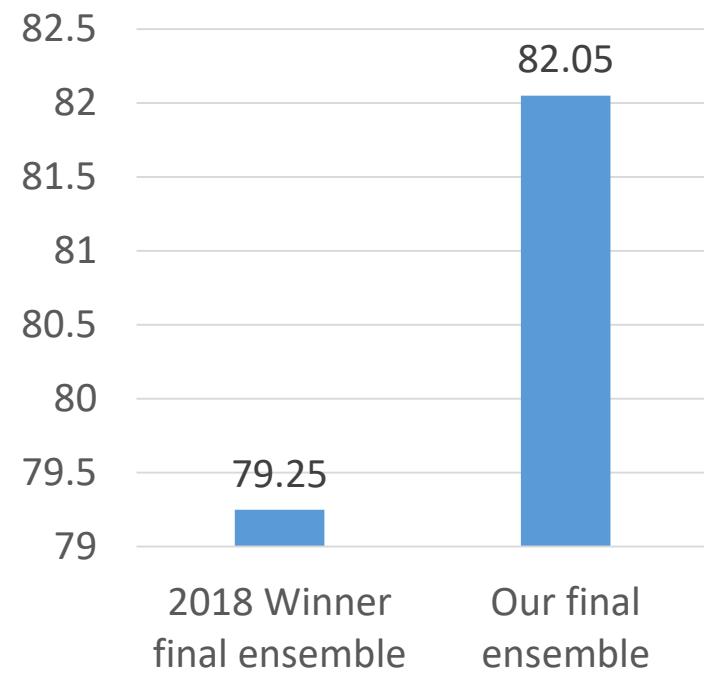
Wayne Zhang

Results

Validation Top5



Test Top5



Overview

Challenge:

Limited GPU resources

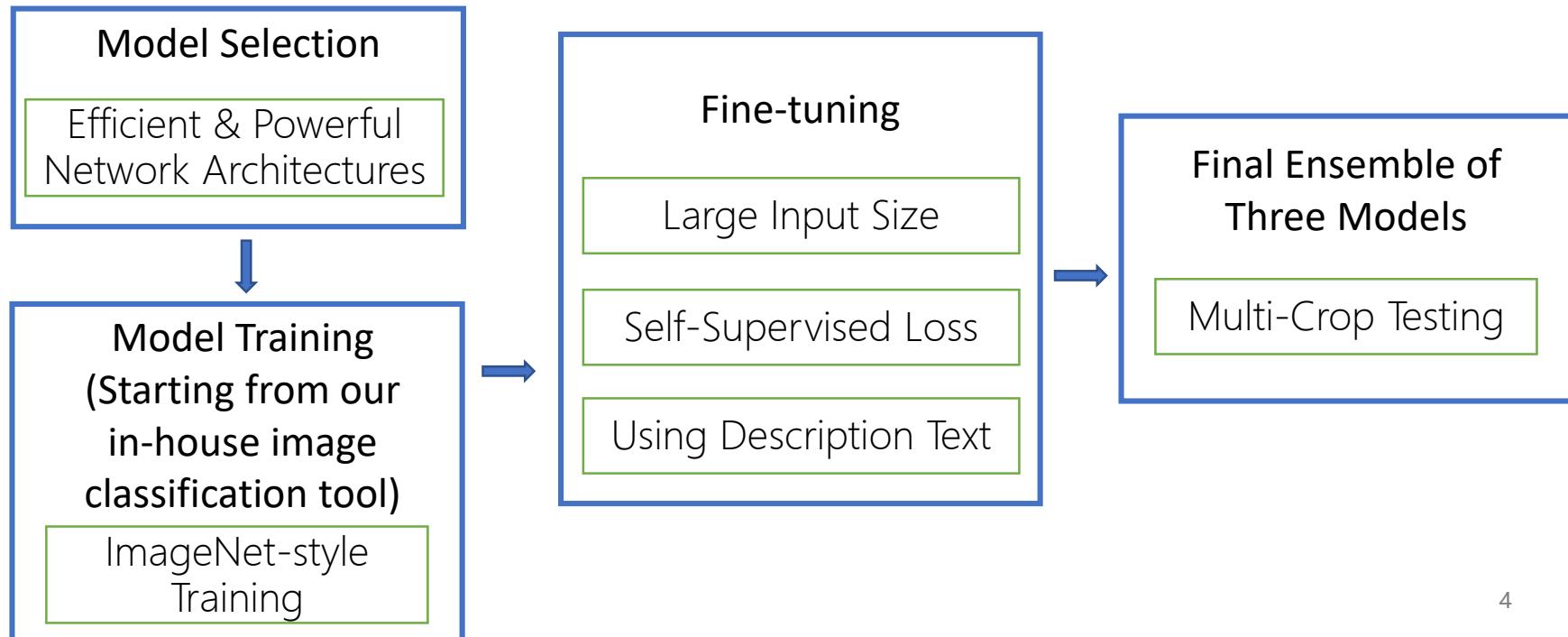
VS

Large-scale data

Idea Validation

Many-model Ensemble

Pipeline:



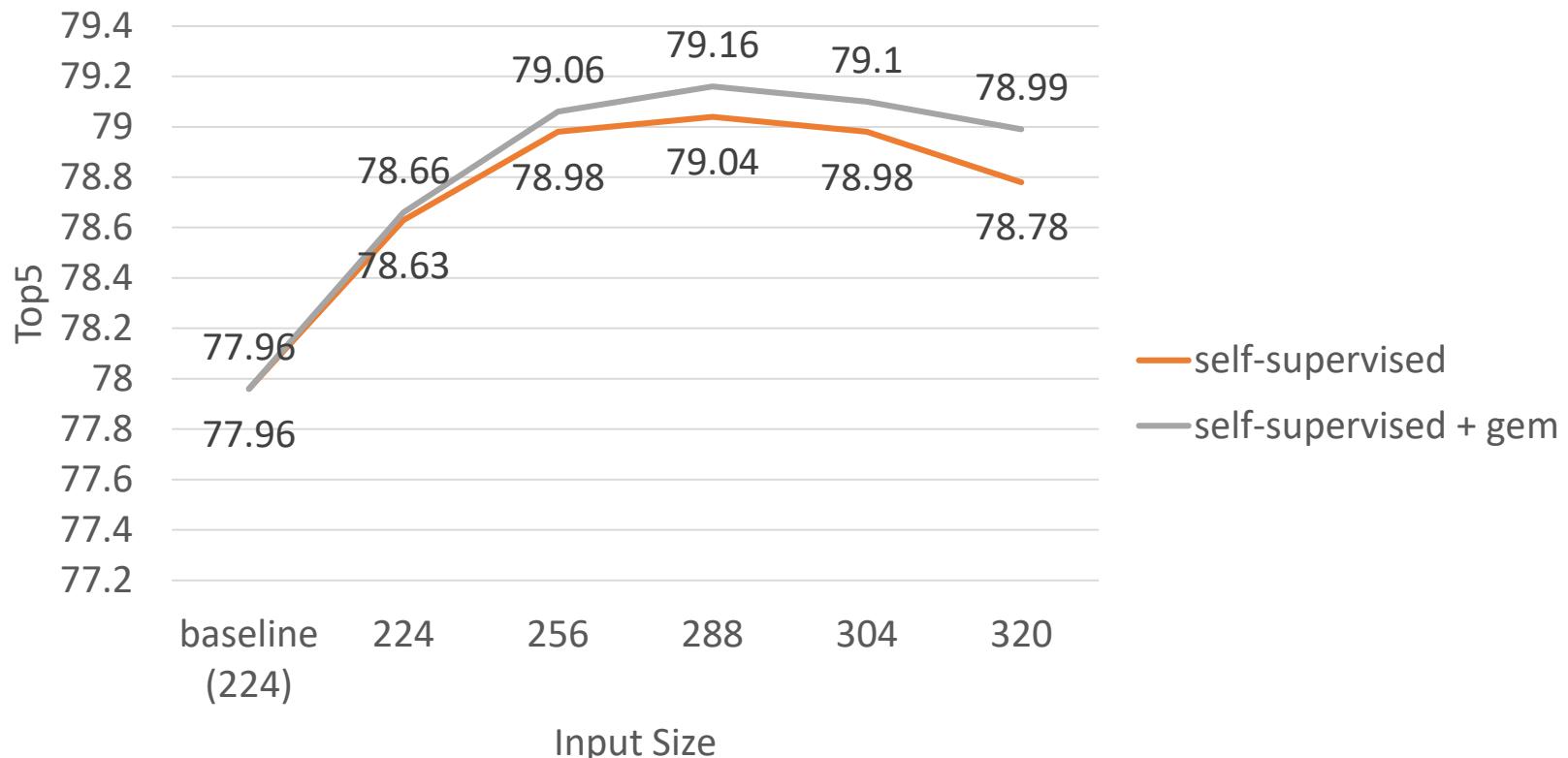
Efficient & Powerful Networks

Network (Input Size)	ImageNet Top1	Estimated Training Time on WebVision*
NASNet-A (331)	82.70	64 GPUs 67 days
PNASNet-5 (331)	82.90	64 GPUs 61 days
SENet154 (224)	81.32	64 GPUs 18 days
ResNeXt152 variant (224) (Our Primary Model)	81.53	64 GPUs 12 days
Inception-ResNet-v2 (299)	80.10	64 GPUs 12 days
DPN98(224)	79.80	64 GPUs 11 days
SEResNet152(224)	78.43	64 GPUs 9 days

*Estimated training time for Webvision 150 epochs on TITANXp

Fine-tuning with Expanded Input Size

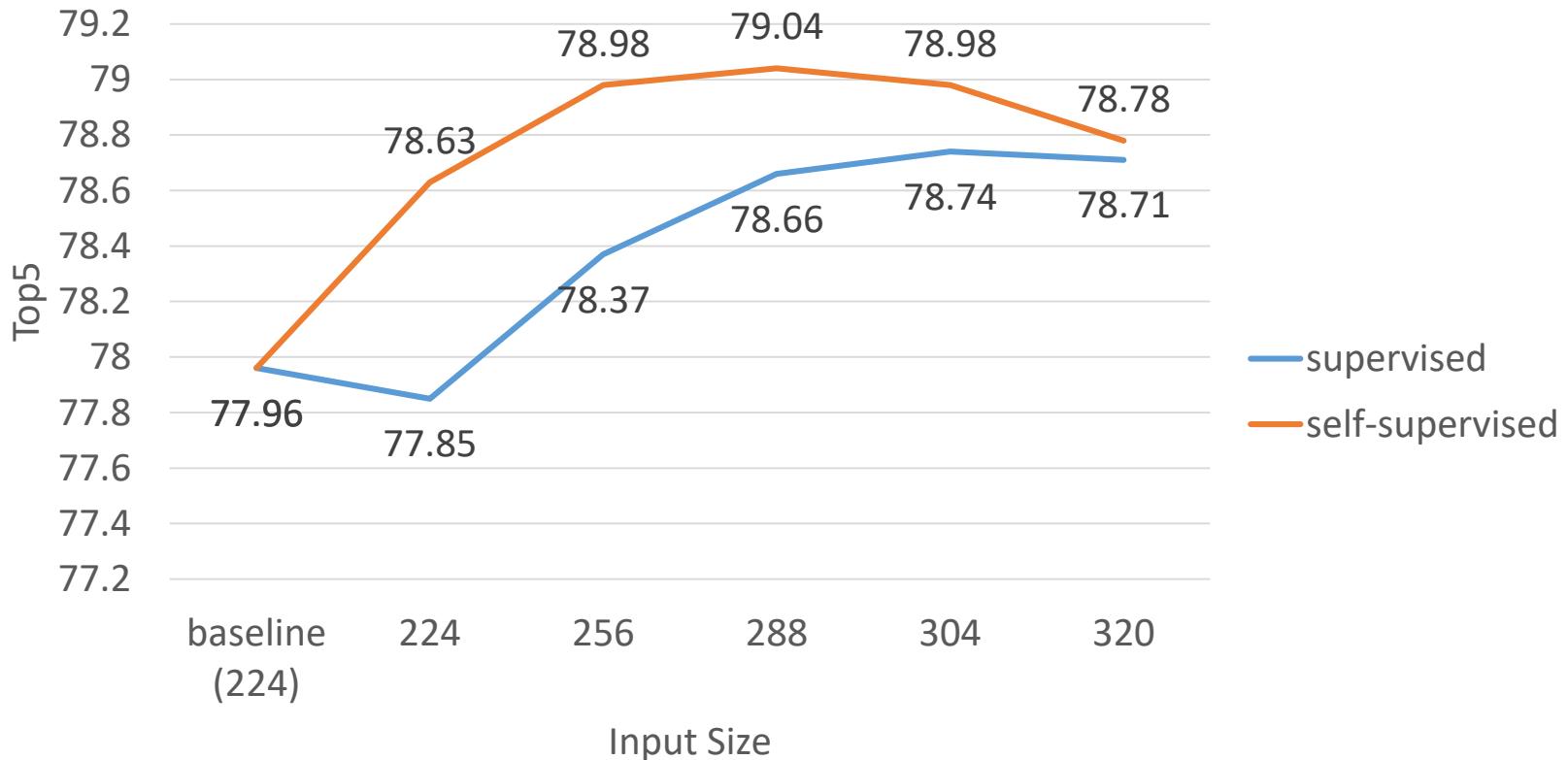
- Experience from ImageNet:
 - Larger input size performs better.
 - Due to limited resources, we fine-tune with large input sizes only.
- Generalized-Mean (GeM) pooling [1] adapts with large inputs better than global average pooling.



[1] Berman, Maxim, et al. "MultiGrain: a unified image embedding for classes and instances."

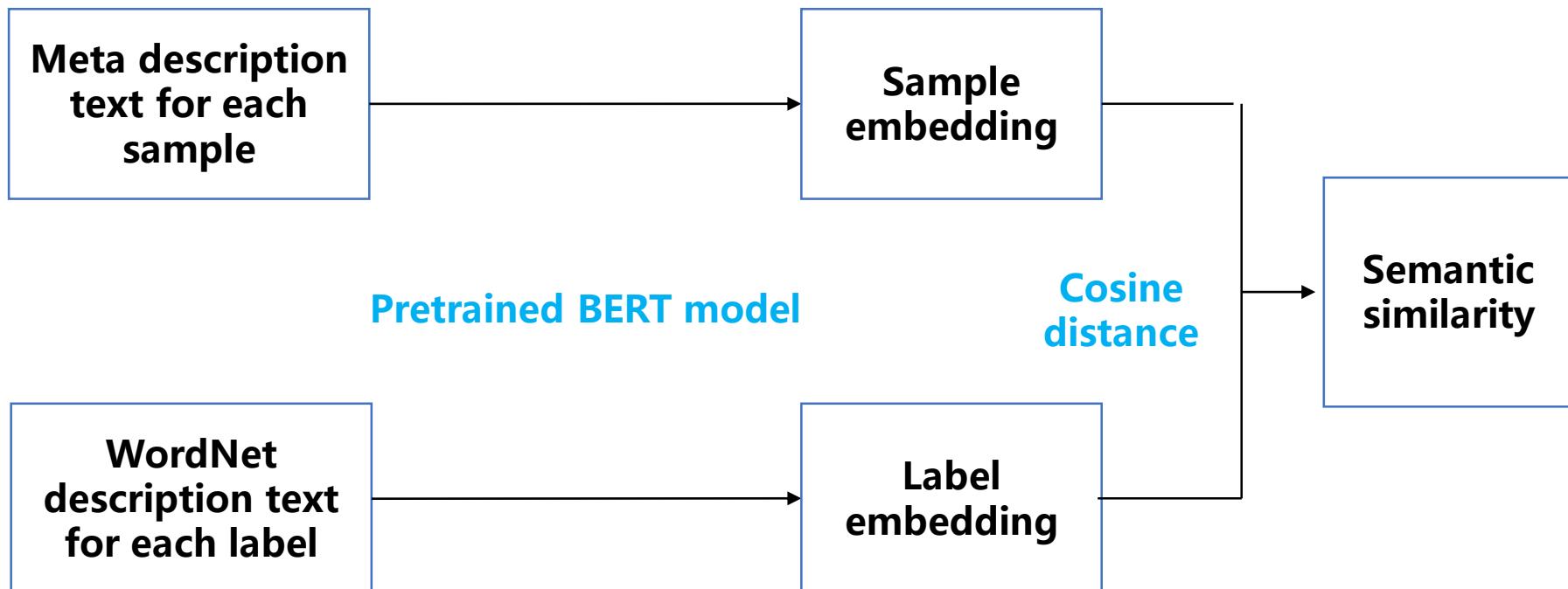
On-the-fly Self-supervised Loss

- After supervised training converges, pseudo labels from network itself are more reliable than noisy ground-truth labels.



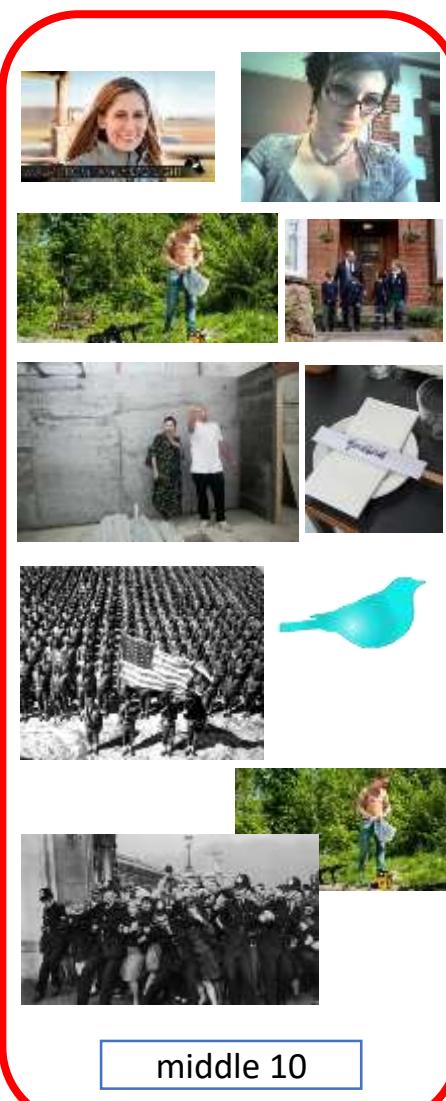
Using Description Text

- Select samples by semantic similarity between embeddings of sample description text and label description text.



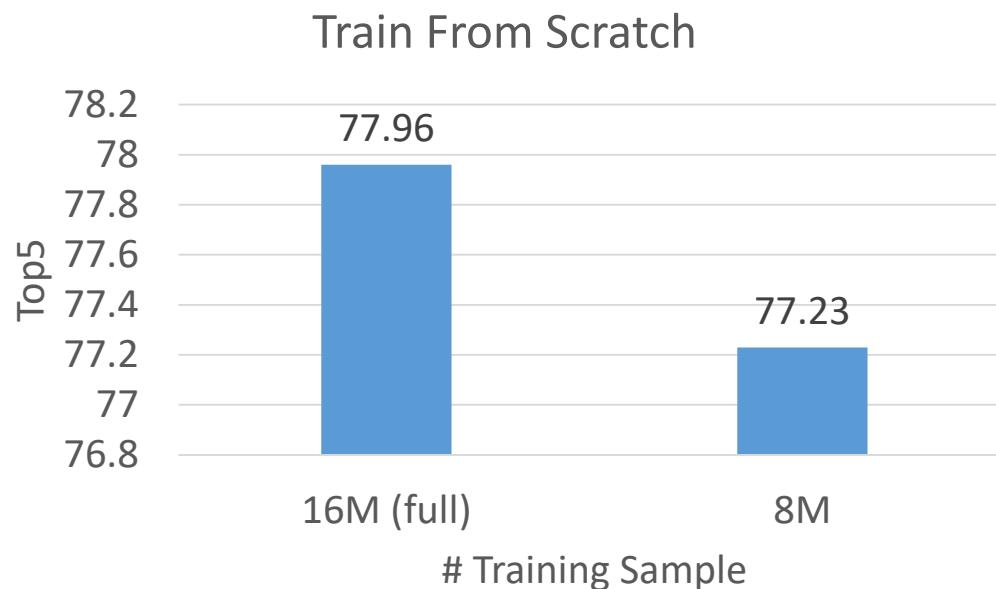
Using Description Text

Tag: Yardbird

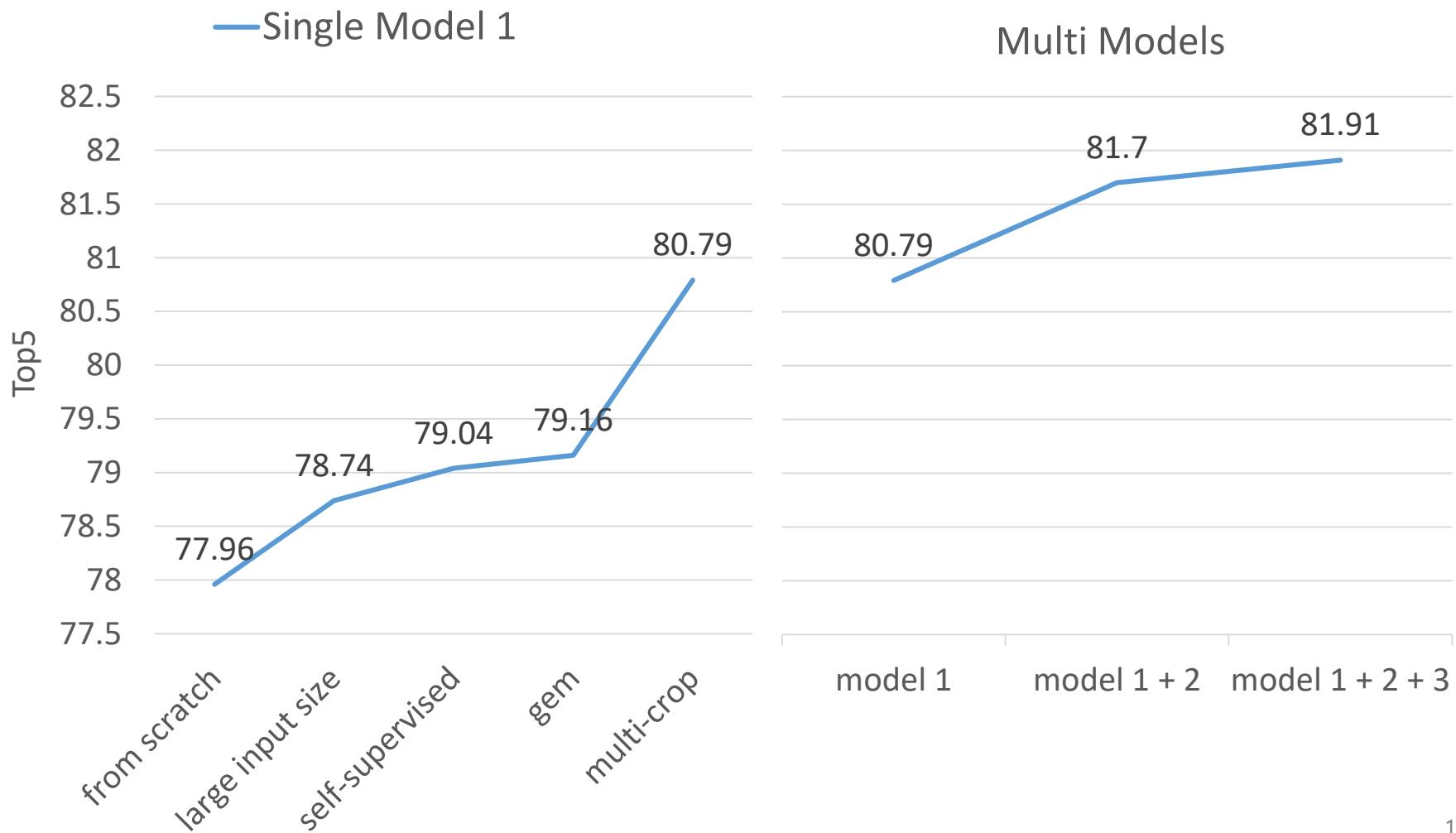


Using Description Text

- Despite of visually appealing selection, we found training from scratch with the selected partial training set did not perform as well as with the full training set.
- Nevertheless, partial-set model contributes to the final ensemble's performance.



Ensemble



Take-home Message

- ❑ Fundamental improvements of image classification bring large gains.
 - Efficient network with large capacity
 - Expanded input size + GeM pooling
 - On-the-fly self-supervised loss
- ❑ Side information may bring gains, however we did not have enough time and GPUs to explore them.
 - Description text based sample selection using BERT
- ❑ De-noising tricks are hard to tune well.
 - GHM
 - Focal loss

BigVideo Research Team of SenseTime

Dedicated to research on deep understanding of Internet photos & videos

- Holistic Semantic Understanding
 - People, Scene, Action, Event
- Big Data
 - 1 billion Images/Frames processed per day
- High Accuracy
 - 90% recall @ 1 / 1,000,000 FAR
- High Performance
 - 3000 QPS single GPU

50+ Researchers, 8 PhDs, 100+ Publications

Thank You!