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ABSTRACT

Single image dehazing is an ill-posed problem that has recently

drawn important attention. Despite the significant increase in in-

terest shown for dehazing over the past few years, the validation

of the dehazing methods remains largely unsatisfactory, due to the

lack of pairs of real hazy and corresponding haze-free reference

images. To address this limitation, we introduce Dense-Haze – a

novel dehazing dataset. Characterized by dense and homogeneous

hazy scenes, Dense-Haze contains 33 pairs of real hazy and cor-

responding haze-free images of various outdoor scenes. The hazy

scenes have been recorded by introducing real haze, generated by

professional haze machines. The hazy and haze-free corresponding

scenes contain the same visual content captured under the same

illumination parameters. Dense-Haze dataset aims to push signif-

icantly the state-of-the-art in single-image dehazing by promoting

robust methods for real and various hazy scenes. We also provide

a comprehensive qualitative and quantitative evaluation of state-

of-the-art single image dehazing techniques based on the Dense-

Haze dataset. Not surprisingly, our study reveals that the existing

dehazing techniques perform poorly for dense homogeneous hazy

scenes and that there is still much room for improvement.

I. INTRODUCTION

Haze represents one of the atmospheric phenomena most chal-

lenging for camera sensors and vision applications. Haze is an often

occurring meteorological phenomenon especially during autumn

and spring in temperate climates being generated by particles that

scatter and absorb the incident light. The visibility of such hazy

scene is highly degraded and as a result they are characterized by

poor contrast, and additional noise. For instance, the presence of

haze has a great impact in the road traffic as it may severely reduce

the visibility for drivers. As a result, restoring the contents in hazy

images – process known as dehazing – is important for several

outdoor image processing and computer vision applications such

as ADAS, remote sensing and visual surveillance.

Restoring the visibility in hazy images based only on a single

input RGB image is challenging, being a mathematically ill-

posed problem [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The

problem is related also to underwater image dehazing [11], [12],

[13], [14]. Fattal [1] introduces a Markov Random Field (MRF)

method assuming that shading and transmission functions are

locally statistically uncorrelated. He et al. [5] propose the Dark

Channel Prior (DCP), a simple but effective solution to estimate

the transmission map. Instead of using alpha-matting as in [5], the

method of Meng et al. [15] is based on a regularization strategy and

refines the boundaries of the rough transmission estimated by DCP.

Berman et al. [16] extends the model proposed in [17] observing
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Fig. 1. Three examples of the Dense-Haze dataset that provides 33

pairs of hazy and corresponding haze-free (groundtruth) outdoor

images.

that the RGB color space can be approximated by a discrete set

of color clusters. Another category is represented by multi-scale

fusion approaches [18], [19] that enhance the hazy scenes without

explicitly estimating the transmission map. More recently, several

machine learning dehazing methods [20], [21], [22], [23], [24],

[25], [26] have been introduced in the literature. DehazeNet [21] is

trained based on a synthetically built dehazing dataset to estimate

the transmission map which is subsequently used to compute a

haze-free image via traditional optical model. Employing also a

synthesized dataset in the training stage, Ren et al. [22] define

a coarse-to-fine neural network consisting of a cascade of CNN

layers.

Although the interest shown for the image dehazing problem has

increased significantly over the past few years, the validation of the

proposed dehazing methods [27] has generally remained unmet,

mainly due to the absence of ground-truth (haze-free) images.

Recording realistic images is very challenging and time-consuming

due to the practical issues associated to the recording of reference

and hazy images under identical illumination conditions. As a

result, most of the existing dehazing assessment datasets [28], [29],

[30] rely on synthesized hazy images using a simplified optical

model and known depth. Tarel et al. [28] introduced the first

synthetic dehazing dataset (FRIDA) which contains 66 computer

graphics generated traffic scenes. D-HAZY [29] is another synthetic

dehazing dataset with 1400+ real images and corresponding depth

maps used to synthesize hazy scenes based on Koschmieder’s light

propagation model [31]. The dataset of Luthen et al. [32] contains

only four sets of indoor scenes considering NIR images as ground-

truth.

So far the focus in the dehazing literature has been on relatively



light hazy conditions which potentially limits the utility of the

proposed existing dehazing techniques for real scenes with dense

haze. The introduction of a dehazing dataset with dense haze

and corresponding haze-free reference images is very important to

assess the existing dehazing techniques and furthermore to advance

the research in the dehazing field.

The main contribution of this paper is Dense-Haze, a new

realistic dehazing dataset. Characterized by dense and homoge-

neous hazy scenes, Dense-Haze contains 33 pairs of real hazy

and corresponding haze-free images of various outdoor scenes.

In order to generate hazy scenes we used a professional haze

machine that imitates real haze with high fidelity. To preserve the

illumination conditions, all the outdoor scenes are static and have

been recorded during cloudy days. Basically, Dense-Haze extends

the O-HAZE [33] dataset that has been used recently for the first

single image dehazing challenge ever organized [34]. In contrast to

O-HAZE that contains only light hazy scenes, Dense-Haze is more

challenging since all the recorded scenes contain a denser and more

homogeneous haze layer (see Fig. 1). We believe that introducing

the Dense-Haze dataset will push significantly the state-of-the-art

in single-image dehazing methods making them to be more robust

for real and various dense haze scenes.

A second contribution of this paper is a comprehensive qual-

itative and quantitative evaluation of the state-of-the-art single

image dehazing techniques based on the Dense-Haze dataset. In

our study we compare a set of representative dehazing methods

and evaluate them using traditional measures such as PSNR and

SSIM on Dense-Haze dataset. Our experimental results reveal that

the existing dehazing techniques perform poorly for dense hazy

scenes, which was somewhat expected given the fact the most of

the existing methods were introduced and validated on lighter haze

conditions. There is clearly much room for improvement and our

proposed Dense-Haze dataset can promote and benchmark research

for robust image dehazing solutions.

II. RECORDING DENSE-HAZE DATASET

In this section we discuss the methodology of recording the 33

pairs of hazy and haze-free (ground-truth) outdoor images of the

Dense-Haze dataset. As we briefly discussed, a crucial problem

in collecting such images is represented by capturing pixel-level

images for each scene, with and without, haze under identical

conditions, using the same camera settings, viewpoint, etc. Besides

assuring that the scene is static, the scene components keep do not

change their spatial position during the recording (quite challenging

for natural scenes due to numerous factors), the most challenging

issue is to preserve the outdoor scene illumination.

Therefore, the outdoor scenes have been recorded in general dur-

ing in the morning of cloudy days. Additionally, another important

constraint was given by the influence of the wind. In order to limit

fast spreading of the haze in the scene we could record images only

when the wind speed was below 2-3 km/h. This constraint was hard

to meet, it is a main reason for the 8 weeks duration required by

the recording of the 33 outdoor scenes from Dense-Haze.

To yield hazy scenes, the haze was spread using two professional

haze machines (LSM1500 PRO 1500 W), which generate vapor

particles with diameter size (typically 1 - 10 microns) similar to

the particles of the atmospheric haze. The haze machines use cast or

platen type aluminum heat exchangers to induce liquid evaporation.

In order to simulate the effect occurring with water haze over larger

distances than the investigated 20-30 meters, we used special (haze)

liquid with higher density. To obtain a dense and homogeneous

haze layer in the scene, we employed for 2-3 minutes both haze

machines powered by a portable 2800 Watt generator, and waited

for another 2-3 minutes.

Before introducing haze in the scenes, we settled the recording

setup composed by a tripod and a Sony A5000 camera that

was remotely controlled (Sony RM-VPR1). This setup allowed to

acquire JPG and ARW (RAW) 5456 × 3632 images, with 24 bit

depth. For each scene recording a manual adjustment of the camera

settings has been performed. We use the same camera setting to

capture the haze-free and hazy images of the same scene. Basically,

the camera parameters related to the shutter-speed (exposure-time),

the aperture (F-stop), the ISO and white-balance have been kept

identical when recording hazy and haze-free scenes. Therefore,

the closer regions (that in general are less distorted by haze) have

similar appearance (in terms of color) in the corresponding scenes.

The optimal camera parameters (aperture-exposure-ISO), have

been set based on the built-in light-meter of the camera, but also

using an external exponometer (Sekonic). For the custom white-

balance, we used the middle gray card (18% gray) of the color

checker. This is a common photographic process that requires to

use the camera white-balance mode in manual mode and place the

reference gray-card in the front of the camera (the gray-card was

placed in the center of the scene in the range of four meters).

Additionally, all the recorded scenes contain a color checker to

allow for the post-processing of the recorded images. We used a

classical Macbeth color checker with the size 11 by 8.25 inches

with 24 squares of painted samples (4×6 grid).

III. EVALUATED DEHAZING TECHNIQUES

In this work we evaluate qualitatively and quantitatively several

state-of-the-art single image dehazing techniques based on the

Dense-Haze dataset. For the sake of completeness, in the following

paragraphs we briefly review the evaluated dehazing methods.

He et al. [5], introduce probably the most influential single-image

dehazing approach. The authors of [5] define the Dark Channel

Prior (DCP), a statistic observation that yields a rough estimate (per

patch) of the transmission map. DCP is a heuristic approach that

builds on the observation that excepting the sky/hazy regions the

local regions contain pixels that present low intensity in at least

one of the color channels. The roughly estimated transmission

is refined by an alpha matting strategy [5] or by using guided

filter [36]. In our evaluation, the results of He et al. [5] have been

generated using the DCP refined with guided filters.

Meng et al. [15] introduce a method that builds on the DCP [5].

The estimated transmission map (based on DCP) is refined further

using a boundary constraint that is combined with a weighted L1

norm regularization. Overall, this method mitigates the lack of

resolution in the DCP transmission map. Moreover, the method of

Meng et al. [15] demonstrates some improvement compared with

the He et al. [5] technique.

Fattal [17] makes use of color-lines in the RGB color space

firstly introduced by Omer et al. [37]. The method is built on the
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Fig. 2. Comparative results of representative single image dehazing techniques. The first column shows the hazy images and the last

column shows the ground truth. The middle columns, from left to right, present the results of He et al. [5], Meng et al. [15], Fattal [17],

Cai et al. [21], Ancuti et al. [35], Berman et al. [16] and Ren et al. [22].

observation that the distributions of pixels in small natural image

patches exhibit one-dimensional structures. This finding allows to

compute a rough estimate of the transmission map that is further

refined by employing a Markov Random Field model that filters

the noise and removes some artifacts due to the scattering.

Cai et al. [21] introduces DehazeNet, a convolutional neural

network (CNN) approach that trains a model to map hazy to haze-

free patches. DehazeNet first extracts the features extraction, than

employs a multi-scale mapping and finally a non-linear regression

is performed. The model is trained using a synthesized dehazing

dataset.

Ancuti et al. [35] rely also on DCP, but their work the authors

introduce a simple method to estimate locally the airlight constant.

Deriving several input images obtained from distinct definitions

of the locality notion, the method employs a multi-scale fusion

strategy. Designed initially as a solution for more complex night-

time hazy scenes (that are characterized by severe scattering and

multiple sources of light), this fusion-based strategy shown to be

competitive also for day-time single-image dehazing.

Berman et al. [16] extends the color-lines concept of [17]

observing that the RGB color space can be approximated by a

discrete set of color clusters. The method builds on the observation

that the pixels of a cluster appear in the entire image plane. As a

result, the pixels in a cluster are affected differently by the haze and

convey information that can be used to estimate the transmission

map.

Ren et al. [22] is also a a convolutional neural network (CNN)

strategy, but different than [21], they first estimate the transmission

map by a coarse-scale network, that is subsequently refined by

a fine-scale network. Similarly, the training of the network is



He et al. [5] Meng et al. [15] Fattal [17] Cai et al. [21] Ancuti et al. [35] Berman [16] Ren et al. [22]
PSNR CIEDE2000 PSNR CIEDE2000 PSNR CIEDE2000 PSNR CIEDE2000 PSNR CIEDE2000 PSNR CIEDE2000 PSNR CIEDE2000

Set 4 14.12 21.54 14.57 21.22 11.10 27.98 10.08 28.50 14.39 24.89 12.55 26.08 11.39 25.04

Set 6 15.99 30.19 15.47 27.43 12.32 33.31 10.97 30.40 15.74 19.51 14.79 34.92 12.46 28.05

Set 7 15.65 22.23 16.97 21.13 14.59 26.84 13.95 20.30 18.48 17.07 15.29 26.80 16.45 18.66

Set 13 13.43 24.04 15.03 21.85 11.64 30.74 14.54 19.50 17.57 19.84 12.98 25.85 15.34 18.88

Set 14 15.06 24.63 14.67 24.40 13.11 27.08 9.58 30.00 11.18 28.31 12.62 28.02 11.78 25.59

Set 19 14.42 20.27 13.92 22.08 10.71 27.24 11.09 24.44 13.27 24.52 12.24 24.84 11.29 23.35

Set 25 14.51 19.88 14.78 20.72 11.54 26.28 11.20 22.06 15.62 21.00 11.60 24.89 12.29 20.06

Set 29 14.36 19.72 14.86 19.53 11.06 28.15 14.00 18.06 14.77 19.08 13.99 22.85 16.00 14.85

Set 30 14.69 19.78 15.12 23.23 10.48 33.03 13.45 20.13 16.24 20.72 13.72 22.47 14.58 20.55

Set 31 14.22 21.79 14.60 21.19 9.88 32.66 11.61 22.11 13.98 21.99 13.03 25.43 12.52 20.59

Table I. Quantitative evaluation. In this table are presented 10 randomly picked up sets from our Dense-Haze dataset (the hazy images,

ground truth and the results are shown in Fig.2). Using the haze-free (ground-truth) images we can compute the PSNR and CIEDE2000

values for the dehazed images produced by the evaluated techniques.

He et al. [5] Meng et al. [15] Fattal [17] Cai et al. [21] Ancuti et al. [35] Berman et al. [16] Ren et al. [22]
SSIM 0.398 0.352 0.326 0.374 0.306 0.358 0.369

PSNR 14.557 14.621 12.114 11.362 13.669 13.176 12.524

CIEDE2000 23.388 23.420 27.834 26.879 24.417 27.918 24.689

Table II. Quantitative evaluation of the entire Dense-Haze dataset. This table presents the average values of the SSIM, PSNR and

CIEDE2000 indexes, over the entire dataset (33 sets of images).

based on a synthetically generated dehazing dataset, obtained from

haze-free images and their associated depth maps employed as a

transmission map in the simplified optical model.

IV. EVALUATION AND DISCUSSION

The 33 pairs of hazy and haze-free (ground-truth) outdoor images

of the Dense-Haze dataset have been used to evaluate several

representative single image dehazing techniques that were briefly

described in the previous section. In Fig.2 are shown 7 scenes of

the Dense-Haze dataset and the dehazed image results generated

using the methods of He et al. [5], Meng et al. [15], Fattal [17],

Cai et al. [21], Ancuti et al. [35], Berman et al. [16] and Ren et

al. [22].

By analyzing the visual results presented in Fig.2, we can observe

that in general the DCP-based techniques [5], [15], [35] recover

the global image structure. However, it can be observed that these

methods , in general, distort the color in restored hazy regions.

Such color shifting distortions are in general observable in the

lighter regions. Similarly, the methods of Fattal [17] and Berman

et al [16] introduce unpleasing color artifacts. Not surprisingly,

although they do not introduce additional distortions, the learning-

based approaches of Ren et al [22] and Cai et al [21], trained

using synthetic hazy dataset, are not able to remove the hazy

(white) appearance. Overall, Fig. 2 demonstrates that all the single

image dehazing techniques from this study perform quite poorly

for scenes from the Dense-Haze dataset. We conclude that the

analyzed methods introduce structural distortions close to the sharp

transitions with the artifacts more visible in regions far away from

the camera. Moreover, in some cases the color distortions of the

dehazed results look unnatural.

In addition to qualitative evaluation, Dense-Haze dataset makes

possible for an objective quantitative evaluation of the single-

image dehazing techniques. The haze-free (ground-truth) images

available in our dataset allow to evaluate the quality of the

corresponding dehazed results as a per-pixel fidelity to the ground-

truth. In our evaluation, we considered the Peak Signal-to-Noise

Ratio (PSNR), Structure Similarity Index Measure (SSIM) [38]

and CIEDE2000 [39], [40]. While PSNR measures absolute errors,

SSIM is a perception-based model that assesses results in the ranges

in [-1,1], with maximum value 1 for two identical images. For color

appearance, we consider CIEDE2000 [39], [40] that measures the

color difference between two images and generates smaller values

for better color preservation.

The quantitative results based on PSNR and CIEDE2000 of the

image pairs shown in Fig. 2 are reported in Table I. Moreover,

in Table III we summarize the overall quantitative results over the

entire Dense-Haze dataset. From these tables, we can conclude

that the He et al. [5] and Meng et al. [15] perform slightly better

in terms of structure and color restoration compared with the

other techniques. Overall, all analyzed dehazing methods achieve a

relatively low performance in SSIM, PSNR and CIEDE2000 terms.

This demonstrates once again the complexity of the image dehazing

problem.

V. CONCLUSIONS

We introduce a novel dehazing dataset that contains dense-hazy

scenes and their counterpart haze-free images. As revealed, by

our proposed Dense-Haze dataset, the existing image dehazing

techniques are not prepared to deal with dense hazy scenes and

leaves significant room for improvement both qualitatively and

quantitatively.
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