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Abstract

Communication between humans deeply relies on our capability of experiencing, expressing, and

recognizing feelings. For this reason, research on human-machine interaction needs to focus on the

recognition and simulation of emotional states, prerequisite of which is the collection of affective corpora.

Currently available datasets still represent a bottleneck because of the difficulties arising during the

acquisition and labeling of authentic affective data. In this work, we present a new audio-visual corpus

for possibly the two most important modalities used by humans to communicate their emotional states,

namely speech and facial expression in the form of dense dynamic 3D face geometries. We also introduce

an acquisition setup for labeling the data with very little manual effort. We acquire high-quality data by

working in a controlled environment and resort to video clips to induce affective states. In order to obtain

the physical prosodic parameters of each utterance, the annotation process includes: transcription of the

corpus text into the phonological representation, accurate phone segmentation, fundamental frequency

extraction, and signal intensity estimation of the speech signals. We employ a real-time 3D scanner

for the recording of dense dynamic facial geometries and track the faces throughout the sequences,

achieving full spatial and temporal correspondences. The corpus is not only relevant for affective visual

speech synthesis or view-independent facial expression recognition, but also for studying the correlations

between audio and facial features in the context of emotional speech.
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I. INTRODUCTION

With their increasing abilities, computers are becoming more and more part of our everyday life.

Being it computer-driven information kiosks, intelligent automobile systems, games, animated movies,

or serving robots for museums or hospitals, the one- or bi-directional communication between humans

and machines has already become common practice. In order for computer systems to become fully

integrated in people’s everyday life, they need to be able to recognize and simulate affective states,

which are fundamental capabilities in human-human communications. Interacting with an artificial agent

will never be perceived as natural, particularly by people who are less familiar with computers, unless

the machine can guess the user’s current emotional state and react accordingly.

Although there has been substantial progress in the field of affective computing during the last few

years [1], the development of emotion-capable systems greatly depends on the collection of affective

corpora. Datasets are needed for the training and evaluation of algorithms for both recognition and

synthesis of emotional states. Because authentic data is very hard to collect and label, publicly available

datasets are still a bottleneck for research in this field. Affective expressions in humans are rare, often

suppressed, highly context-related, and thus difficult to capture. For this reason, many of the studies

on affective computing s concentrated so far on acquiring posed data. However, research has shown

that spontaneous emotional behavior clearly differs from its deliberate counterpart; Whissell shows this

in [2] for what concerns spoken language, while numerous other works studied the differences between

posed and natural facial expressions, as in [3] and [4]. For recording spontaneous affective behavior,

a good trade-off between the acquisition of natural emotional expressions and data quality needs to be

found: corpora collected in controlled environments are by definition unnatural, but moving towards more

unconstrained settings increases the amount of noise. When accurate data is required, induction methods

represent a good compromise, and the literature is rich of examples where videos [5], still photographs [6],

music [7], or manipulated games [8] have been used to elicit emotions. Although these methods are not

a replacement of pure naturalism, they are well established and have shown to evoke a range of authentic

emotions in a laboratory environment [9].

Another important issue related to the acquisition of an affective corpus is the type and number of

modalities which should be captured. In the past few years, the research community has converged towards

the idea that automatic affect recognition systems should use cues coming from several modalities, in a

way imitating humans. Even though emotional cues can be extracted from physiological measurements

(e.g. [10], [11]), invasive methods might influence the subject’s emotional state. Humans do not have
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access to the physiological state of others, yet we are very good at guessing someone’s affective state

using cues such as facial expressions, voice modulation, and body pose.

In this work, we focus on the voice and facial expressions modalities and present an acquisition setup

for building an audio-visual corpus with very little manual effort for labeling. We collect high quality

data in a controlled environment and use emotional video clips to induce affective states. Because we

are interested not only in facial expressions but also in affective speech, the speakers are asked to repeat

short sentences from longer scenes extracted from feature films. While the video clips provide a context

in the spirit of film-based induction methods, the repetition of the emotional sentences serves in itself as

an eliciting method, following the idea of Velten [12]. We also introduce a consistency check by asking

the speakers to evaluate the emotion of the actor uttering the sentence in the video clip.

The evaluation, and thus the annotation of the recorded data, requires some definition of emotion, which

is still an unsolved problem in itself. Cowie et al. [13] divide the emotional phenomenons categories in

“episodic” and “pervasive”. Episodic emotions are described as states of mind where the feeling dominates

the person’s awareness, generally for a short period of time. A pervasive emotion, on the other hand,

is something that is integrated in people’s most mental states, influencing the way they experience the

world and act. People’s everyday life is largely emotional, yet most of the technological research on

emotion focuses on the episodic types, which rarely appear in real interpersonal or human-computer

communication. In particular, the majority of affective state recognition and synthesis approaches are

limited to the six basic emotion categories, based on the cross-cultural studies on facial expressions of

Ekman [14] and only include happiness, sadness, fear, anger, disgust, and surprise. These few discrete

categories, however, are not suitable to describe the mainly pervasive emotional states relevant for

communication. An alternative are continuous representations where the emotions are mapped to a low-

dimensional space, e.g., a 2D space based on activation (strength of emotion) and evaluation (positive vs.

negative) [9], [15]. Since this representation is not intuitive and difficult to use for inexperienced users, we

employ a list of affective adjectives to be weighted according to their perceived strength. Lists are easy

to use and allow multiple labels whereas a single label procedure (as it is commonly used for the basic

emotion categories) is insufficient to describe emotions as shown in [9]. While the perceptional evaluation

of the affective states needs input from humans, the audio and visual data is processed with very little

manual effort. In contrast to the Facial Action Coding System (FACS) [16], used by trained experts for

manually labeling videos by means of Action Units (facial muscles activations), we capture the temporal

deformation of the face in real-time using a 3D scanning system [17]. The dynamic depth images are then

transformed into a consistent 3D mesh representation by fitting a generic template to each scan. Such
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representation is not only suitable for emotional visual speech as in [18], but also for view-independent

facial expression recognition, as demonstrated in [19]. The audio stream is simultaneously captured in a

sound absorbent environment such that prosodic features, like sentence melody, speech rhythm, loudness,

and specific phonemes, can be accurately and automatically extracted.

Motivated by the need of multi-modal corpora for the development of affect-aware systems [1], we

propose an acquisition setup (Section III) for building a corpus of affective speech and corresponding 3D

face dynamics. Most of the data is processed automatically (Section IV) thus avoiding expensive manual

labeling procedures. In order to obtain accurate data, we record the corpus in a controlled laboratory

environment and use induction methods to elicit emotions. The induction method is evaluated in Section V

together with some preliminary studies on the acquired data. Compared to existing databases (Section II),

we acquire the first corpus containing both 3D detailed dynamic face geometries and affective speech.

The corpus will be made available for research purposes.

II. RELATED WORK

A. Audio-Visual Datasets

Databases for training and evaluation of affective recognition systems can be divided depending on

whether the recorded emotions are naturalistic, artificially induced (e.g., in Wizard-of-Oz scenarios),

or posed (either by professional actors or not). A comprehensive overview of the existing audio-visual

corpora can be obtained from [13], [20], and [1], we refer only to datasets where affective speech is in

focus.

The HUMAINE Network of Excellence has been an important step forward in the field of affective

computing, producing a collection of databases [20] containing a large number of audio-visual recordings,

only partly labeled, divided into naturalistic and elicited.

Among the naturalistic databases, the ‘Vera am Mittag’ dataset [21] consists of 12 hours of recordings

from a German TV talk show, containing spontaneous emotional speech coming from authentic discus-

sions between the guests of the talk show. Most of the data was labeled by a large number of human

evaluators using a continuous scale for three emotion primitives: valence, activation, and dominance.

The Belfast naturalistic database [22] contains TV recordings and interviews judged relatively emotional,

annotated using the FEELTRACE [9] system. The Castaway Reality Television Database [20] consists of

audio-visual recordings of 10 people competing in activities like touching snakes or lighting outdoor fires

on a remote island; post-activity interviews and diary-type extracts are included. The EmoTV corpus [23]
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contains interactions extracted from french TV interviews, both outdoor and indoor, with a wide range

of body postures; only a very coarse visual annotation is provided.

Among the elicited sets, the Sensitive Artificial Listener (SAL) database [20] contains audio-visual

recordings of humans conversating with a computer. The SAL interface is designed to let the user work

through a range of emotional states. Four personalities are implemented as different virtual characters

(happy, gloomy, angry, and pragmatic) and the user decides to which to talk to. Another corpus containing

elicited emotions is the SmartKom database [24], comprising recordings of people interacting with

a machine in a Wizard-of-Oz scenario. The subjects were asked to solve specific tasks provoking

different affective states. In the Activity Data and Spaghetti Data sets [20], volunteers were recorded

while respectively engaging in outdoor activities and feeling inside boxes containing various objects like

spaghetti or buzzers going off when touched. The subjects recorded the emotions they felt during the

activities. In the first set, both positive and negative affective states with a high level of activation were

elicited, while in the Spaghetti set, a range of brief, relatively intense emotions were provoked. The

Green Persuasive Dataset [20] was recorded in a scenario where a persuader tried to convince several

people to adopting more environmentally-friendly lifestyles. Audio-visual recordings of eight dialogs are

available, each featuring a different persuadee. The entire dataset is annotated for persuasiveness, i.e., with

continuous-valued labels indicating how convincing was the persuader at any given instant, according to

a third observer. The eWiz database [25] contains 322 sentences pronounced by the same speaker with

varying prosodic attitudes (declarative, question, exclamation, incredulous question, suspicious irony,

and obviousness) suggested by reading a text specifying the context in which the sentence should have

been uttered. In [26], the EmoTaboo protocol is introduced, consisting in letting pairs of people play

the game Taboo while their faces, upper bodies, and voices are recorded. One of the subjects is a

confederate, making sure that enough emotional reactions are observed in the other, naı̈ve, person. The

authors of [27] recorded children while playing with Sony AIBO robots. The subjects believed of being

actually interacting with the robots, which were wirelessly controlled by a human operator. Videos are

not available due to privacy restrictions.

Going towards acted corpora, the GEMEP corpus [28], following the method of Banse and Scherer [29],

comprises recordings of the voices, faces, and full bodies of professional stage actors while uttering

meaningless sentences. The set of displayed emotions is an extension of the six basic ones, and the

actors were guided by reading introductory scenarios for each emotion. Professional Italian actors were

hired for the DaFEx database [30], resulting in a number of low resolution videos depicting each actor

while uttering the same sentence in seven different emotional states (six basic emotions plus neutral)
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at three levels of intensity. The actors were asked to read a short introductory text before each session.

In [31], a database was collected where 100 students had their facial movements and speech recorded

by means of a videocamera and a microphone while pronouncing a set of sentences, each representing

one of eleven emotional states, an extension of the six basic emotions.

In contrast to video recordings which are difficult to annotate, marker-based motion capture has been

used to obtain 3D information. The Interactive Emotional Dyadic Motion Capture database (IEMO-

CAP) [32] consists of ten actors in dyadic sessions motion-captured with markers on the face, head, and

hands. Scripted and spontaneous spoken communication scenarios represent emotions such as happiness,

anger, sadness, frustration and neutral state.

Some works aimed at visual speech modeling for synthesis purposes also acquired corpora containing

actors engaged in affective speech, usually employing motion-capture techniques as in [33]–[36]. Because

placing markers on someone’s face is error prone and might even influence the subject’s emotional

state like other invasive physiological measurements, marker-based motion capture is only suitable when

acquiring posed data from actors.

B. 3D Face Datasets

Relevant to our new corpus are also databases containing only 3D geometries of faces. Yin et al. [37]

collected the facial 3D shapes and textures of 100 students while posing the six basic emotions at four

intensity levels plus neutral. The same authors published a dynamic 3D facial expression database [38]

where 101 subjects were recorded by means of a real-time 3D scanner while changing their facial

expression from neutral to one of the six basic emotions and back. The Bosphorus Database for 3D face

analysis [39] includes 3D scans of 81 people showing the six basic emotions plus a selected subset of

Action Units [40], variations in head pose and different kinds of occlusion are also included in the set.

The University of York 3D Face Database [41] contains 3D facial scans of different subjects showing

different expressions and head poses. The IV2 Multimodal Biometric Database [42] also includes 3D

expressive static face geometries of several people. Other popular databases contain only neutral scans,

as the Gava Database [43], the FRAV3D Face Database [44], the BJUT-3D Large-Scale Chinese Face

Database [45]. The Basel Face Model [46] is a publicly available statistical face model built from the 3d

scans of 200 people in neutral pose, but the original training data is not available. To our knowledge, there

is no currently available dataset containing both the audio and dense dynamic 3D facial representations

of affective speech.
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Fig. 1. Recording setup: one speaker sits in front of the 3D scanner in the anechoic room while watching one of

the eliciting videos clips.

III. ACQUISITION SETUP

In order to simultaneously record affective speech and detailed 3D face geometries, we have employed

a real-time 3D scanner and a professional microphone. To benefit from automatic speech segmentation,

the noise level should be kept as low as possible; we therefore acquired the data in an anechoic room, with

walls covered by soundwave-absorbing materials. The authors could operate the system and communicate

with the speakers from a separate room. Fig. 1 shows the setup, with a volunteer being scanned while

watching one of the eliciting videos on the screen.

A. Recording Setup

For acquiring detailed dynamic face deformation data, we employed the 3D scanner described in [17].

The system combines stereo and active illumination based on phase-shift for robust and accurate 3D scene

reconstruction. Stereo overcomes the traditional phase discontinuity problem and motion compensation

is applied in order to remove artifacts in the reconstruction. The system consists of two high-speed

monochrome cameras, a color camera, and a DLP projector without the 4-segment color wheel (RGBW),

so that it projects three independent monochrome images at 120 Hz (sent as the R, G and B channel).

The two monochrome cameras are synchronized and record the three images. The texture camera is also

synchronized, but uses a longer exposure to integrate over all three projected images. Thanks to the above

scanner, accurate depth maps of the subjects’ faces could reliably be captured at 25 fps.

For the audio recordings, we used a studio condenser microphone placed in front of the speaker. The

microphone was connected to a computer controlled by the authors in a separate room, running standard
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open source audio acquisition software. To reduce the level of direct noise coming from the projector’s

cooling fans, we enclosed the projector in a wooden box, thus making the background noise level on the

recorded audio stream low enough for automatic speech segmentation.

B. Acquisition Protocol

Our corpus is comprised of 40 short English sentences extracted from feature films. Having the goal

of building a database of affective speech for the English language, we contacted native speakers who

volunteered to have their voice and facial movements recorded. We gathered 14 subjects, 8 females and

6 males, aged between 21 and 53 (average 33.5). Each person was required to sit alone in the anechoic

room and asked to pronounce each sentence twice, first with a neutral tone and then with the emotional

one. For synchronization purposes, the volunteers clapped their hands in front of the cameras before

uttering the sentences.

Neutral speech was achieved by asking the speakers to read the sentence from text displayed on a

screen placed above the scanner’s cameras. At a second stage, the emotional film scene corresponding

to the previously read text was shown to the volunteers, followed by a repetition of the part of the video

containing the specific sentence. The speakers had the chance to see the clips again and were asked to

rate the sentence that they had just heard by means of the emotions they thought it conveyed. After the

evaluation was completed, the short clip containing the sentence was shown again and the speakers were

asked to repeat it according to their feelings. A detailed description of the evaluation process is presented

in Section V.

IV. DATA PROCESSING

A. Video Processing

The real-time 3D scanner is employed to capture detailed 3D geometry and texture of the performances

of each speaker, as shown by the first two images in figure 2. Facial expression analysis, however, requires

full spatial and temporal correspondences of the 3D data. To achieve this goal, we use the two-step

procedure introduced in [47]: First, a generic template mesh is warped to the reconstructed 3D model of

the neutral facial expression of a speaker. Second, the resulting personalized template is automatically

tracked throughout all facial expression sequences.

1) Personalized Face Template: In order to build a person-specific face template, each speaker is

asked to turn the head with a neutral expression and as rigidly as possible in front of the real-time

3D scanner. The sequence of 3D scans is registered and integrated into one 3D model using the online
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modeling algorithm proposed in [48]. Small deformations arising during head motion violate the rigidity

assumption, but in practice do not pose problems for the rigid reconstruction. Instead of using the 3D

model directly as a personalized face template, a generic face template is warped to fit the reconstructed

model. Besides enabling a hole-free reconstruction and a consistent parameterization, using the same

generic template has the additional benefit of providing full spatial correspondence between different

speakers.

Warping the generic template to the reconstructed 3D model is achieved by means of non-rigid

registration, where for each mesh vertex vi of the generic template a deformation vector di is determined

in addition to a global rigid alignment. This is formulated as an optimization problem, consisting of

a smoothness term minimizing bending of the underlying deformation [49], and a set of data con-

straints minimizing the distance between the warped template and the reconstructed model. As the

vertex correspondences between generic template and reconstructed model are unknown, closest point

correspondences are used as approximation similarly to standard rigid ICP registration. A set of manually

labeled correspondences are used for the initial global alignment and to initialize the warping procedure.

The landmarks are mostly concentrated around the eyes and mouth, but a few correspondences are selected

on the chin and forehead to match the global shape. The manual labeling needs to be done only once per

speaker and takes at most a couple of minutes. The resulting personalized template accurately captures

the facial 3D geometry of the corresponding person.

The diffuse texture map of the personalized template is automatically extracted from the rigid registra-

tion scans by averaging the input textures. The face is primarily illuminated by the 3D scanner, and we

can therefore compensate for lighting variations using the calibrated position of the projection. Surface

parts that are likely to be specular are removed based on the half angle. The reconstructed texture map

is typically oversmoothed, but sufficient for the tracking stage.

2) Facial Expression Tracking: The personalized face template is used to track the facial deformations

of each performance. For this purpose, non-rigid registration is employed, in a similar manner as during the

template creation. In this case, the distances between the template vertices and the 3D scans are minimized.

To ensure temporal continuity, optical flow constraints are also included in the optimization. The motion

of each vertex from frame to frame should coincide with the optical flow constraints. During speaking,

the mouth region deforms particularly quickly, and non-rigid registration may drift and ultimately fail.

This can be compensated for by employing additional face-specific constraints such as explicitly tracking

the chin and mouth regions, making the whole process more accurate and robust to fast deformations.

Figure 2 shows a personalized model adapted to a specific frame of a sequence.
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Fig. 2. From left to right, the image shows the 3D reconstruction of a person’s face, the corresponding texture

mapped on it, and the personalized face templated deformed to fit the specific frame.

B. Audio Processing

Different affective states are manifested in speech by changes in the prosody, see [50] for an overview.

As certain prosodic differences are small but still audible, a careful setup of an audio-visual corpus

requires accurate extraction of prosodic parameters from the audio signal.

Speech prosody can be described at the perceptual level in terms of pitch, sentence melody, speech

rhythm, and loudness. The physically measurable quantities of a speech signal are the following acoustic

parameters: fundamental frequency (F0), segment duration, and signal intensity. F0 correlates with pitch

and sentence melody, segment duration correlates with speech rhythm, and signal intensity correlates

with loudness.

The annotation process necessary for obtaining the physical prosodic parameters of the utterances

includes a number of steps: First, the sentence’s text is transcribed into the phonological representation

of the utterance. Then accurate phone segmentation, fundamental frequency (F0) extraction, and signal

intensity estimation are achieved by analyzing the speech data. For the extraction of these physically

measurable prosodic quantities, we applied fully automatic procedures provided by SYNVO Ltd. In the

following, we give an overview of the extraction procedures for fundamental frequency, signal intensity,

and segment duration.

1) Transcription: The phonological representation contains the sequence of phones for the sentences

in the audio-visual corpus, the stress level of syllables, the position and strength of phrase boundaries,

plus the indicators of phrase types. Initial phonological representations of the sentences are obtained

applying the transcription component of the SYNVO text-to-speech synthesis system to the text version

of the corpora. See [51] for a description of such transcription component. These initial phonological

representations contain the standard phonetic transcription, also called canonical phonetic transcription,
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Fig. 3. Comparison of emotional (top) and neutral (bottom) tone of the same phrase, as pronounced by one speaker.

For each utterance, spectrogram, signal intensity contour, and fundamental frequency contour of the speech signal,

as well as sample faces are shown from bottom to top. The emotional utterance clearly shows higher overall signal

intensity and at the second syllable, a high rising fundamental frequency contour in contrast to the low falling one

of the neutral utterance. Also, it is clearly visible that syllable nucleus durations are longer in the emotional state,

while consonant durations are similar.

of the sentences.

The phonological information (phrase type, phrase boundary, and sentence accentuation) of these

automatically generated representations is then adapted to the speech signals. Neural network-based

algorithms are employed for automatic phrase type, phrase boundary, and syllable accent identification.

Detailed information on this procedure can be found in [52].

2) Fundamental Frequency Extraction: F0 values of the natural speech data of the prosody corpus

are computed every 10 ms using a pitch detection algorithm based on combined information taken from
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the cepstrogram, the spectrogram, and the autocorrelation function of the speech signal, cf. [52]. Signal

sections judged as unvoiced by the algorithm are assigned no F0 values. Figure 3 shows examples of

such fundamental frequency contours.

3) Signal Intensity Extraction: Signal intensity values of the natural speech data are computed every

1 ms. The root mean square value of the signal amplitude calculated over a window of 30 ms length is

used. Signal intensity contours of two utterances are displayed in figure 3.

4) Segment Duration Extraction: An accurate extraction of phone and speech pause durations requires

an exact segmentation of the natural speech data of the audio-visual corpus into adjacent, non-overlapping

speech or pause segments, and a correct assignment of labels to these segments indicating the segment

type. This assignment is commonly termed “labeling”.

Since the phonological representation contains the standard phonetic transcription of an utterance (see

Section IV-B1), it is convenient to use this standard transcription for automatic segmentation and labeling.

However, a close phonetic transcription, also referred to as matched phonetic transcription, indicating

i: I U u:

e

vowels @

q 3 3: V O:

A A: Q

diphthongs @ U a I a U e I E @ I @ O I o U U @

p p h b t t h d k k h g

m n N

consonants r

f v T D s z S Z x h

j w

l

affricates t S d Z

pauses c /

TABLE I

SEGMENT TYPES OF ENGLISH PHONES AND SPEECH PAUSES USED FOR TRANSCRIPTION OF THE SPEECH DATA

OF THE AUDIO-VISUAL CORPUS.
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pronunciation variants made by the speaker, results in a much better segmentation and labeling.

5) Segment Types: Segment types correspond to the phone types determined in the transcription.

Plosives are additionally segmented into their hold and burst parts, which are labeled separately. While

the burst part of a plosive is denoted by the same symbol used for the plosive phone type, a “c” denotes the

hold part, also called closure or preplosive pause. Speech pauses corresponding to phrase boundaries are

labeled with the symbol “/”. For a plosive following a speech pause, no preplosive pause is segmented.

Table I lists all segment types used for the transcription of natural speech data.

6) Automatic Segmentation Procedure: Manual transcription and segmentation of the speech prosody

corpus would take too much time. We apply a segmentation procedure first presented in [53], which

simultaneously delivers a highly accurate phonetic segmentation and a close phonetic transcription.

This segmentation procedure relies on iterative Viterbi search for best-matching pronunciation variants

and on iterative retraining of phone hidden Markov models (HMMs). In contrast to existing state-of-the-

art segmentation systems like [54] and [55], this procedure does not require elaborate features, but only

“standard” mel-frequency cepstral coefficients (MFCCs) and voicing information.

The segmentation procedure consists of two stages: First, context-independent three-state left-to-right

phone HMMs with 8 Gaussian mixtures per state are trained on the natural speech data of the audio

corpus using the standard phonetic transcription of the utterances by applying a so-called “flat start”

initialization, cf. [56].

For the second stage, a small set of language- and speaker-dependent pronunciation variation rules is

applied to the canonical transcriptions and a recognition network is generated for each utterance. Such a

network includes all pronunciations allowed by the rules.

A Viterbi search then determines the most likely path through the networks and thus delivers an adapted

phonetic transcription of each utterance. These new transcriptions are used to retrain the HMMs that are in

turn used in the next iteration for the Viterbi search. The procedure stops when the number of insertions,

deletions, and replacements of phones between the current and the previously adapted transcriptions falls

below some predefined threshold. Details on this segmentation procedure can be found in [57].

Since the length of the analysis window restricts the accuracy of boundary detection of certain segments,

e.g., preplosive pauses, a post-processing step was added to the second stage, correcting segment boundary

placement of specific segment classes based on the speech signal amplitude and voicing information.
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Fig. 4. Histograms showing the evaluation of all movie clips as expressed by the speakers (top row) and by the

users of the online survey (bottom row). For each emotional label, the bars indicate how many times (in percentage)

that particular label was given the corresponding grade shown on the x axis. The ratings of these two groups are

very consistent.

V. CORPUS

In total, we recorded 14 native English speakers uttering 1109 sequences, 4.67 seconds long on average.

Some of the extracted audio-visual features are shown in Figure 3. For labeling the affective states, we

have carried out three evaluations. First, we have evaluated the eliciting video clips by asking the speakers,

followed by an online survey to check the consistency. The third online evaluation rates the affective

content of the actually recorded and processed data.

For the first evaluation, the speakers were asked to rate each video containing the sentence just before

pronouncing it in the recording room. The volunteers filled out a paper form, giving grades between 0 and

5 to a set of 11 suggested emotional adjectives (“Negative”, “Anger”, “Sadness”, “Stress”, “Contempt”,

“Fear”, “Surprise”, “Excitement”, “Confidence”, “Happiness”, and “Positive”), where 0 means “I don’t

know”, 1 corresponds to “Not at all”, and 5 to “Very”. An additional field was provided in order to allow

the suggestion of labels which might have been considered appropriate for the clip. On a later stage, the

eliciting movie clips were presented to a second, larger group of human observers, by means of an online

survey, presenting the same structure as the form presented to the speakers. The clips where shown in

a randomized order, allowing the user to quit the evaluation at any time. In total, 122 people took part

in the survey (64.75% males and 35.25% females; 20.5% native English speakers), grading over 1000

video clips.

Figure 4 shows the results of both evaluations: the top row corresponds to the volunteers’ judgment,

the bottom row to the online survey. The histograms show how many times (in percentages of all movie

clips) each label was given the corresponding grade on the x-axis. When comparing the results, one sees

that the distributions of the grades are very similar between the two groups although the volunteers tended



BIWI Technical Report n. 270

Fig. 5. For each emotional label, the mean and standard deviation of the grades are given respectively by the

volunteers (cyan) and by the anonymous users of the online survey (magenta). In general, the average grade is

lower for the speakers, who evaluated the eliciting videos as part of the acquisition setup in the anechoic room.

Moreover, the standard deviations for the speakers are larger since they tend to give the grades 1 and 5 more often

as shown in Figure 4.

Fig. 6. Mean and standard deviation of the difference between the grades for each sentence given to each emotional

label by the speakers and by the people who took the online survey. The plot supports the observation of Figure 5,

where the grades for the online survey are slightly higher in average. Note that the standard deviation for all affective

labels is less than 1, which is the distance between two grades.

to give the grade “Not at all” more often than people from the online survey. Figure 5 shows mean and

standard deviation of the grades given to each emotional label over all sentences. The cyan bars on the

left represent the grades given by the speakers in the recording room, while the magenta bars on the right

represent the corresponding evaluations given by the online survey. Apart from a decrease in the standard

deviations, we notice that the average generally slightly increases in the results yielded by the online

survey. Figure 6 shows the mean and standard deviation computed over the differences in the grades for

each sentence given to all videos in the two groups of observers for each suggested affective adjective.

The plot supports the observation of Figure 5, where the grades for the online survey are slightly higher

in average. Note that the standard deviation for all affective labels except contempt is less than 1, which
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Fig. 7. For each emotion, the number of sentences evaluated as such is shown. There is a clear predominance of

negative emotions, while fear is the least perceived affective state.

Fig. 8. Correlations between the affective adjectives. There is a high correlation (bright fields) among positive

and negative emotions, in particular “Excitement” was very often mentioned together with “Happiness”. Note that

there is also a significant correlation between some of the basic emotions, like “Sadness” and “Fear” or “Surprise”

and “Happiness”.

is the distance between two grades. The tendency that the speakers give the grades 1 and 5 more often

than the group of the online survey might be explained by the difference in the environment. While the

speakers evaluated the video clips in the recording room without any distraction, the online survey could

have been evaluated in any environment such that the affective states seem to be perceived as less intense.

Nevertheless, Figure 6 shows that the evaluation obtained by the two groups is very consistent, which

indicates that the laboratory environment had only a minor impact on the perception of affective states.

Figure 7 shows for each label the number of sentences which were given an average grade greater than

3 during the online survey, thus giving an idea of the emotional content of the eliciting videos. There

is a clear predominance of negative emotions, while fear is the least perceived affective state. Some of

the labels are naturally depending on each others, as can be seen in Figure 8, where the brighter upper

and lower corners indicate a high correlation among positive and negative states. We notice that there
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Fig. 9. Fundamental frequency averaged over each proposed affective adjectives on the x-axis, i.e., over the corpus

sentences which were given a mean grade > 3 for that particular label.

Fig. 10. Average audio signal intensity depending on the emotional labels on the x-axis.

is also a significant correlation between some of the basic emotions (“Sadness”, “Fear”, “Surprise”, and

“Happiness”). This indicates that a single label procedure based on the basic emotions is insufficient to

describe emotions.

In order to assess the quality of the acquired data, videos were created containing renderings of

the tracked 3D faces and the original audio signals. A third survey was thus designed, where the

number of suggested emotional labels was enriched by the three additional adjectives most commonly

proposed during the first two evaluation steps (“Nervousness”, “Disappointment”, “Frustration”), and by

the additional label “Emotional”. Note that each sentence was recorded twice for each person, one after

reading from text, and one after showing the corresponding induction video.

Being the number of sequences to be judged very large, it has not yet been possible to achieve a

sensible number of evaluations for each of them1. For a preliminary study, only sentences which were

rated at least 3 times have been considered. We proceeded by selecting as neutral the utterances with an

average grade less than 3 for the label “Emotional”, and the ones with “Emotional” mean grade greater

than 3 as the remaining affective states. The plots in Figures 9 and 10 show the relations of the affective

adjectives and simple audio features, averaged over all sequences labeled according to the above rule.

In particular, Figure 9 refers to the fundamental frequency F0 and Figure 10 to the intensity of the

audio signal. Already such simple features show a pattern, especially for the intensity features: emotional

1The online survey is available at

http://www.vision.ee.ethz.ch/∼gfanelli/emo survey/survey.cgi
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Fig. 11. Mean head translation velocity computed from sequences labeled as each of the adjectives on the x-axis.

Fig. 12. Average head translation acceleration for the sequences labeled as the adjectives on the x-axis.

sequences present on average higher values. The fundamental frequency F0 shows a higher variation for

positive emotions than for negative emotions. Simple features extracted from the 3D face data are shown

in Figures 11 and 12, respectively describing the mean over the first and second derivatives computed

over the magnitude of the rigid translation movements of the heads, i.e., mean velocity and acceleration.

Again, sequences judged as non-emotional show on average lower values. These plots indicate that a

single feature is not enough to recognize the affective state but that already several low-level audio-visual

cues can give some evidence for the affective state of the user.

Using the accurate phoneme segmentation technique described in Section IV-B, we can easily arrange

the 3D face scans into groups corresponding to a particular phoneme. That is, groups where all observed

facial shapes corresponding to a particular phoneme are represented. Figure 13 shows the result of

applying Principal Component Analysis (PCA) to the set of scans corresponding to the phoneme “I”, as

uttered by the same subject. It is possible to apply PCA in this case only thanks to the non rigid 3D

face tracking technique discussed in Section IV-A, which gives us spatial and temporal correspondences

among all facial scans. As training set, we picked one facial scan for each phoneme, right at the middle

of the interval of occurrence returned by the automatic segmentation procedure for that phoneme; in this

way we try to limit the variations due to coarticulation, i.e., the dependency of the current mouth shape

from the preceding and following phonemes. The three rows in Figure 13 show the three main modes

of variation observed in the data, with the average in the middle and the faces generated by setting the

corresponding weights to −3 std. on the left and +3 std. on the right, respectively. It appears that much

of the variation in the facial configuration depends on the emotion with which the phoneme was uttered.

While this plot only gives a simple example, it suggests that the acquired data could be used to build
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Fig. 13. First three modes of the PCA model of the phoneme ‘I’. The middle column shows the average face, while

the left and right columns represent the result of setting the mode’s weight to −3 std. and +3 std., respectively.

advanced models for audio-visual animation or recognition purposes.

VI. DISCUSSION

In this work, we have presented a system for the acquisition of an audio-visual corpus comprised of

affective speech and corresponding dense dynamic 3D face geometries. The system was designed to ease

the data acquisition process by reducing the required manual labeling effort. Current time-consuming

steps of our setup are the recording of the raw data, which takes about 1.5 hours for 80 short sentences

spoken by one person, and the evaluation of the affective states in the processed data. While the recording

process cannot be speeded up, the evaluation can be widely spread using a web-based survey.

The corpus currently comprises 1109 sentences uttered by 14 native English speakers; it includes

the audio synchronized with the faces’ depth data. For the speech signal, a phonological representation

of the utterances, accurate phone segmentation, fundamental frequency extraction, and signal intensity

are provided. The depth signal is converted into a sequence of 3D meshes, which provide full spatial

and temporal correspondences across all sequences and speakers. This is an important requirement for

generating advanced statistical models which can be used for animation or recognition applications. One

of the future work is to increase the size of the corpus and to extend the setup in order to extract additional

audio-visual features like phrase type, phrase boundary, and sentence accentuation. We also emphasize
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that our system is not limited to English and could be directly applied to other languages like German,

French, Italian, Spanish, or Portuguese.

The described affective corpus can be used to model coarticulation for the synthesis of emotional visual

speech. Other applications include view-independent facial expression recognition, emotion-independent

lip reading, or audio-visual emotion recognition. Our experiments indicate that the corpus might also be

useful for studying the correlations between audio and facial features in the context of emotional speech.

To this end, the list of affective adjectives might be mapped to a low-dimensional space or the online

survey might be adapted to obtain additional emotional information. Because we intend to provide both

the raw and the processed data, the corpus could also be used as a benchmark dataset. For example,

a comparison of the results of different 3D face trackers could be achieved by measuring the loss of

information between the original and the processed data in terms of the perceived emotional content.
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