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Abstract In this paper we propose a deep learning

solution to age estimation from a single face image

without the use of facial landmarks and introduce the

IMDB-WIKI dataset, the largest public dataset of face

images with age and gender labels. If the real age es-

timation research spans over decades, the study of ap-

parent age estimation or the age as perceived by other

humans from a face image is a recent endeavor. We

tackle both tasks with our convolutional neural net-

works (CNNs) of VGG-16 architecture which are pre-

trained on ImageNet for image classification. We pose

the age estimation problem as a deep classification prob-

lem followed by a softmax expected value refinement.

The key factors of our solution are: deep learned models

from large data, robust face alignment, and expected

value formulation for age regression. We validate our

methods on standard benchmarks and achieve state-of-

the-art results for both real and apparent age estima-

tion.
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Fig. 1 Predicting the real and apparent age of a person.

1 Introduction

Age estimation from a single face image (see Fig. 1)

is an important task in human and computer vision

which has many applications such as in forensics or so-

cial media. It is closely related to the prediction of other

biometrics and facial attributes tasks such as gender,

ethnicity, hair color and expressions. A large amount

of research has been devoted to age estimation from a

face image under its most known form - the real, bio-

logical, age estimation. This research spans decades as

summarized in large studies [42, 2, 9, 25, 20]. Several

public standard datasets [2, 42, 44] for real age esti-

mation permit public performance comparison of the

proposed methods. In contrast, the study of apparent

age, that is the age as perceived by other humans, is at

the beginning. The ChaLearn Looking At People ICCV

2015 challenge [10] provided the largest dataset known

to date of images with apparent age annotations, here

called the LAP dataset, and 115 registered teams pro-

posed novel solutions to the problem.

With the recent rapid emergence of the intelligent

applications there is a growing demand for automatic
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extraction of biometric information from face images

or videos. Applications where age estimation can play

an important role include: (i) access control, e.g., re-

stricting the access of minors to sensible products like

alcohol from vending machines or to events with adult

content; (ii) human-computer interaction (HCI), e.g.,

by a smart agent estimating the age of a nearby per-

son or an advertisement board adapting its offer for

young, adult, or elderly people, accordingly; (iii) law

enforcement, e.g., automatic scanning of video records

for suspects with an age estimation can help during in-

vestigations; (iv) surveillance, e.g., automatic detection

of unattended children at unusual hours and places; (v)

perceived age, e.g., there is a large interest of the gen-

eral public in the perceived age (c.f. howhot.io), also

relevant when assessing plastic surgery, facial beauty

product development, theater and movie role casting,

or human resources help for public age specific role em-

ployment.

One should note that the intelligent applications

need to tackle age estimation under unconstrained set-

tings, that is, the face is not aligned and under known,

unchanged, light and background conditions. There-

fore, in the wild, a face needs first to be detected, then

aligned, and, finally, used as input for an age estimator.

It is particularly this setup we target in our paper with

our system. Despite the recent progress [42, 46, 10] the

handling of faces in the wild and the accurate prediction

of age remains a challenging problem.

1.1 Proposed method

Our approach – called Deep EXpectation (DEX) – to

age estimation is motivated by the recent advances in

fields such as image classification [5, 32, 47] or object

detection [19] fueled by deep learning. From the deep

learning literature we learn four key ideas that we ap-

ply to our solution: (i) the deeper the neural networks

(by sheer increase of parameters / model complexity)

are the better the capacity to model highly non-linear

transformations - with some optimal depth on current

architectures as [28] suggests; (ii) the larger and more

diverse the datasets used for training are the better the

network learns to generalize and the more robust it be-

comes to over-fitting; (iii) the alignment of the object in

the input image impacts the overall performance; (iv)

when the training data is small the best is to fine-tune

a network pre-trained for comparable inputs and goals

and thus to benefit from the transferred knowledge.

We always start by first rotating the input image at

different angles to then pick the face detection [41] with

the highest score. We align the face using the angle and

crop it for the subsequent steps. This is a simple but

robust procedure which does not involve facial land-

mark detection. For our convolutional neural networks

(CNNs) we use the deep VGG-16 architecture [48]. We

always start from pre-trained CNNs on the large Ima-

geNet [47] dataset for image classification such that (i)

to benefit from the representation learned to discrimi-

nate 1000 object categories in images, and (ii) to have

a meaningful representation and a warm start for fur-

ther re-training or fine-tuning on relatively small(er)

face datasets. Fine-tuning the CNNs on face images

with age annotations is a necessary step for superior

performance, as the CNN adapts to best fit to the par-

ticular data distribution and target of age estimation.

Due to the scarcity of face images with (apparent) age

annotation, we explore the benefit of fine-tuning over

crawled Internet face images with available (biological,

real) age. We crawl 523,051 face images from the IMDb

and Wikipedia websites to form IMDB-WIKI - our new

dataset which we make publicly available. Fig. 4 shows

some images. It is the largest public dataset with gen-

der and real age annotations. While age estimation is

a regression problem, we go further and cast the age

estimation as a multi-class classification of age bins fol-

lowed by a softmax expected value refinement.

Our main contributions are as follows:

1. the IMDB-WIKI dataset, the largest dataset with

real age and gender annotations;

2. a novel regression formulation through a deep clas-

sification followed by expected value refinement;

3. the DEX system, winner of the LAP 2015 chal-

lenge [10] on apparent age estimation.

This work is an extended and detailed version of

our previous LAP challenge report paper [45]. We now

officially introduce our IMDB-WIKI dataset for appar-

ent age estimation, provide a more in depth analysis

of the proposed DEX system, and apply the method

and report results also on standard real age estimation

datasets.

The remainder of the paper is organized as follows.

Section 2 briefly reviews related age estimation litera-

ture. Section 3 introduces our proposed method (DEX).

Section 4 introduces publicly our new IMDB-WIKI dataset

with faces in the wild and age and gender labels, then

describes the experimental setups and discusses the achieved

results. Section 5 concludes the paper.

2 Related work

While almost all literature prior the LAP 2015 chal-

lenge focuses on real (biological) age estimation from

a face image, Han et al. [26] provide a study on de-

mographic estimation in relation to human perception
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and machine performance. In the next, we briefly review

the age estimation literature and describe a couple of

methods that most relate with our proposed method.

We refer to [42, 20, 14, 26, 2, 9] for broader literature

reviews.

2.1 Real age estimation

Most of the prior literature assumes a normalized (frontal)

view of the face in the input image or employ a face pre-

processing step such that the face is localized and an

alignment of the face is determined for the subsequent

processing steps. Generally, the age estimators work on

a number of extracted features, feature representations

and learn models from training data such that to mini-

mize the age estimation error on a validation data. The

whole process assumes that the train, validation, and

test data have the same distribution and are captured

under the same conditions.

FG-NET [42] and MORPH [44] datasets with face

images and (real) age labels are the most used datasets

allowing for comparison of methods and performance

reporting under the same benchmarking conditions. We

refer to [42] for an overview of research (365+ indexed

papers) on facial aging with results reported on FG-

NET dataset.

A large number of face models has been proposed.

We follow the taxonomy from [20] and mention: wrin-

kle models [33], anthropometric models [11, 33, 43], ac-

tive appearance models (AAM) [6], aging pattern sub-

space [18], age manifold [13, 23, 21], biologically-inspired

models (including biologically-inspired features (BIF) [24]),

compositional and dynamic models [54, 49], local spa-

tially fexible patches [56], and methods using fast Fourier

transform (FFT) and genetic algorithm (GA) for fea-

ture extraction and selection [15], local binary patterns

(LBP) [58], Gabor filters [16]. Recently, the convolu-

tional neural networks (CNN) [35], biologically inspired,

were successfully deployed for face modeling and age es-

timation [53, 36, 52].

The age estimation problem can be seen as a regres-

sion [13] or as a classification problem up to a quanti-

zation error [34, 18]. Among the most popular regres-

sion techniques we mention Support Vector Regression

(SVR) [8], Partial Least Squares (PLS) [17], Canonical

Correlation Analysis (CCA) [27], while for classification

the traditional nearest neighbor (NN) and Support Vec-

tor Matchines (SVMs) [7].

In the next we select a couple of the representative

(real) age estimation methods. Yan et al. [55] employ a

regressor learning from uncertain labels, Guo et al. [23]

learn a manifold and local SVRs, Han et al. [26] ap-

ply age group classification and within group regression

(DIF), Geng et al. [18] introduce AGES (AGing pat-

tErn Subspace), Zhang et al. [61] propose a multi-task

warped gaussian process (MTWGP), Chen et al. [4]

derive CA-SVR with a cumulative attribute space and

SVR, Chang et al. [1] rank hyperplanes for age esti-

mation (OHRank), Huerta et al. [29] fuse texture and

local appearance descriptors, Luu et al. [38] use AAM

and SVR, while Guo and Mu [22] use CCA and PLS.

Recently, Yi et al. [59] deployed a multiscale CNN,

Wang et al. [53] used deep learned features (DLA) in

a CNN way, while Rothe et al. [46] went deeper with

CNNs and SVR for accurate real age estimation on top

of the CNN learned features.

2.2 Apparent age estimation

Our DEX [45] method (CVL ETHZ team, 1st place

in LAP challenge) was initially introduced for appar-

ent age estimation at the ChaLearn LAP 2015 chal-

lenge [10]. This work is an extension, releasing the IMDB-

WIKI age estimation dataset with some in-depth anal-

ysis. Furthermore, this paper shows that the model pre-

sented in [45] achieves state-of-the-art also on real age

estimation. Some more detailed qualitative and quanti-

tative evaluations in this paper confirm the robustness

and good performance of the DEX model. We review

several runner-up methods that relate the most to our

work and refer to [10] and Section 4.2.2 for more details

on the LAP challenge. These methods are representa-

tive since LAP is the largest dataset to date on apparent

age estimation and the methods employ deep learning

and are the best out of 115 registered participants. A

note is due: all the following apparent age estimation

techniques are either pre-trained for real age estimation

or can easily be adapted to it.

Liu et al. [37] (ICT-VIPL team, 2nd place in LAP

challenge [10], see Tab. 3) proposes the following ap-

proach based on general to specific deep transfer learn-

ing and GoogleNet architecture [50] for 22-layers CNN.

1) Pre-train CNN for multiclass face classification us-

ing the CASIA-WebFace database and softmax loss; 2)

Fine-tune CNN for age estimation on large extra age

dataset with two losses: Euclidean for age encoding and

cross-entropy loss of label distribution learning based

age encoding; 3) Fine-tune CNN on the LAP apparent

age data; 4) Ensemble Learning and fusion of 10 CNNs.

Zhu et al. [62] (WVU CVL team, 3rd place in LAP

challenge) employ GoogleNet [50] deep CNN networks

trained on thousands of public facial images with real

age labels. These are then fine-tuned on LAP appar-

ent age data and then the CNN features are extracted.

Random Forest and SVR are learned on each of ten
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Fig. 2 Pipeline of DEX method for age estimation.

age groups for age estimation and then their results are

fused at test time.

Yang et al. [57] (SEU-NJU team, 4th place in LAP

challenge) use face and landmark detection for face

alignment and the VGG-16 architecture [50] for model-

ing. Private and MORPH 2 data are used for training

of multiple networks with different setups, aligned and

non-aligned faces, different color spaces, filters, objec-

tive losses. The final prediction is a fusion.

UMD team (5th place in LAP challenge) employs

face and landmark detection [31], a CNN model [3],

Adience [9] and MORPH datasets. A classification in

three age groups is followed by age regression.

Enjuto team (6th place in LAP challenge) use face

detection [41] and face landmark detection [31] and 6

CNNs for classification in three age groups and for local

(part face) and global (whole face) prediction of age.

The results are fused.

3 Proposed method (DEX)

The proposed method, DEX (Deep EXpectation) fol-

lows the pipeline in Fig. 2. In this section each step of

the pipeline is explained in detail.

3.1 Face alignment

As many datasets used in this work do not show cen-

tered frontal faces but rather faces in the wild (cf. Fig. 2

(1) and Fig. 4), we detect and align the faces for both

training and testing.

An ideal input face image should be of the same or

comparable size, centered, and aligned to a normalized

position and with minimum background. We choose the

off-the-shelf Mathias et al. [41] face detector to obtain

the location and size (scale) of the face in each image.

This state-of-the-art face detector uses the Deformable

Parts Model (DPM) [12] and inherits robust perfor-

mance. As expected, by cropping the detected face for

the following age estimation processing instead of using

the entire image we obtain massive increases in perfor-

mance.

Many approaches employ rather complex alignment

procedures involving accurate facial landmark detectors

and image warping [51, 57]. In our preliminary exper-

iments we observed that the failure of the landmark

detectors is difficult to predict and harms the perfor-

mance as it leads to wrong face alignments. Since we

target faces in the wild, use a robust face detector, and

our CNNs can tolerate small alignment errors, we build

our alignment procedure as follows.

We explicitly handle rotation by running the detec-

tor not only on the original image but on images rotated

with steps of 5◦ (cf. Fig. 2 (2)). Due to limited compu-

tational resources we check only angles between −60◦

and 60◦. Additionally we run the detector at −90◦,90◦

and 180◦ to cope with flipped or rotated images. At

the end the face with the highest detection score across

all rotations is picked and then rotated to up-frontal

position.

For very few face images, the detector is unable to

detect a face. In those cases the entire image is taken
as the face. We notice that performance increases when

considering also the context around the face. Therefore

we extend the detected face by taking additional 40%

of the width and height of the face on all sides (cf.

Fig. 2 (3)). If the face is too large so that there is no

context on some of the sides, the last pixel at the border

is just repeated. This ensures that the face is always

placed in the same location in the image. As the aspect

ratio of the resulting image might differ, it is squeezed

to 256 × 256 pixels. This forms the input for the deep

convolutional neural network.

Our alignment procedure is rather unorthodox but

initial experiments showed that this works much better

than using facial landmark detection for alignment. Our

method employs a rough and robust alignment that in

very rare cases fails to upright align the face by rotation.

In contrast, the facial landmark detectors can provide

accurate landmarks in a majority of cases which is use-

ful for accurate alignments (especially when the face

is already upright). However, the landmark detectors
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fail much more often (∼ 5% of the images in the LAP

dataset) than our robust approach (∼ 1% of the images

in the LAP dataset) which leads to wrong alignments.

It is difficult to determine these failure cases and to re-

cover from them to ensure that the age estimation part

is still successful. Therefore we decided against align-

ment with landmarks.

We refer to our face alignment procedure as “ro-

bust”, since there are very few cases where it fails com-

pletely and gives always a rough alignment. Though

our procedure does not provide very precise pixel-wise

alignments, our CNN copes well with such level of pre-

cision.

3.2 Age estimation

We employ a convolutional neural network (CNN) to

predict the age of a person starting from a single input

face image. This takes an aligned face with context as

input and returns a prediction for the age. The CNN is

trained on face images with known age.

3.2.1 CNN architecture

Our method uses a CNN with the VGG-16 [48] ar-

chitecture (cf. Fig. 2 (4)). Our choice is motivated (i)

by the deep but manageable architecture, (ii) by the

impressive results achieved using VGG-16 on the Ima-

geNet challenge [47], (iii) by the fact that as in our case

the VGG-16 architecture starts from an input image

of medium resolution (256 × 256), (iv) and that pre-

trained models for classification are publicly available
allowing warm starts for training.

The VGG-16 architecture is much deeper than pre-

vious architectures such as the AlexNet [32] with 16

layers in total, 13 convolutional and 3 fully connected

layers. It can be characterized by its small convolu-

tional filters of 3x3 pixels with a stride of 1. AlexNet

in comparison employs much larger filters with a size

of up to 11× 11 at a stride of 4. Thereby each filter in

VGG-16 captures simpler geometrical structures but in

comparison allows more complex reasoning through its

increased depth.

For all our experiments we start with the convo-

lutional neural network pre-trained on the ImageNet

images, the same models used in [48]. Unless otherwise

noted, we fine-tune the CNN on the images from the

newly introduced IMDB-WIKI dataset to adapt to face

image contents and age estimation. Finally, we tune

the network on the training part of each actual dataset

on which we evaluate. The fine-tuning allows the CNN

to pick up the particularities, the distribution, and the

bias of each dataset and thus to maximize the perfor-

mance.

3.3 Evaluation protocol

For quantitative evaluation in our experiments we use

two different measures.

MAE. For all experiments we report the Mean Ab-

solute Error (MAE) in years. This is the average of

the absolute error between the predicted age and the

ground truth age. MAE is the most used measure in

the literature, a de facto standard for age estimation.

ε-error. The LAP challenge proposes the ε-error

as a quantitative measure. ε-error applies for datasets

where there is no ground truth age but instead a group

of people guessing the ground truth. It takes into ac-

count the standard deviation σ of the age voted by the

people who labelled the images. Thus if the labelled

age for an image varies significantly among the votes, a

wrong prediction is penalized less. By assuming that

those votes are following a normal distribution with

mean age µ and standard deviation σ the error is then

measured as

ε = 1− e−
(x−µ)2

2σ2 . (1)

The final ε-error is the average over all images. Its

value ranges from 0 (perfect predictions) to 1 (com-

pletely wrong).

3.4 Output layer and expected value

The pre-trained CNN (with VGG-16 architecture) for

the ImageNet classification task has an output layer of

1000 softmax-normalized neurons, one for each of the

object classes. In contrast, age estimation is a regression

and not a classification problem, as age is continuous

rather than a set of discrete classes.

For regression we replace the last layer with only 1

output neuron and employ an Euclidean loss function.

Unfortunately training a CNN directly for regression is

relatively unstable as outliers cause a large error term.

This results in very large gradients which makes it dif-

ficult for the network to converge and leads to unstable

predictions.

Instead, we phrase the prediction problem as a clas-

sification problem where the age values are discretized

into |Y | ranges of age. Each age range Yi covers a range

of ages from Ymin
i to Ymax

i and votes for the mean

of all training samples in this age range, yi. In our ex-

periments we consider: a) uniform ranges where each
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Table 1 Performance on validation set of ChaLearn LAP 2015 apparent age estimation challenge. Varying number of output
neurons (∗last layer initialized with weights from IMDB-WIKI pre-training, † fine-tuned on LAP (Expected Value∗ 101 setup)
before training SVR). conv5 3 (100,352 dim) is the last convolutional layer. fc6 (4,096 dim) and fc7 (4,096 dim) are the
penultimate and last fully connected layers, respectively.

w/o IMDB-WIKI pre-training w/ IMDB-WIKI pre-training

Learning strategy
Number Ranges Ranges
output Uniform Balanced Uniform Balanced
neurons MAE ε-error MAE ε-error MAE ε-error MAE ε-error

SVR on conv5 3 8.472 0.647 4.570 0.411
SVR on fc6 15.086 0.787 3.690 0.329
SVR on fc7 12.083 0.720 3.670 0.321
SVR on conv5 3† 7.150 0.560 4.020 0.356
SVR on fc6† 9.695 0.663 3.406 0.297
SVR on fc7† 9.069 0.664 3.323 0.288
Regression 1 5.586 0.475 3.650 0.310
Classification 5 6.953 0.563 6.275 0.501 5.944 0.529 4.394 0.369
Classification 10 6.404 0.511 6.352 0.516 4.243 0.388 3.912 0.337
Classification 25 6.474 0.521 6.507 0.516 3.563 0.309 3.676 0.322
Classification 50 6.424 0.510 7.044 0.555 3.463 0.298 3.517 0.306
Classification 101 7.083 0.548 3.640 0.310
Classification∗ 101 3.521 0.305
Expected Value 5 6.306 0.535 5.589 0.464 5.226 0.481 3.955 0.329
Expected Value 10 5.586 0.470 5.369 0.456 3.553 0.315 3.505 0.296
Expected Value 25 5.580 0.469 5.522 0.468 3.306 0.289 3.353 0.290
Expected Value 50 5.653 0.473 6.042 0.509 3.349 0.291 3.318 0.289
Expected Value 101 5.965 0.493 3.444 0.299
Expected Value∗ 101 3.252 0.282

Fig. 3 Impact of the number of output neurons and the age ranges on the MAE performance.

age range covers the same number of years and b) bal-

anced ranges such that each age range covers approxi-

mately the same number of training samples and, thus,

fit the data distribution. The number of age ranges de-

pends on the training set size, i.e. each age range needs

sufficiently many training samples and thus finer dis-

cretization requires more samples. In this way, we train

our CNN for classification and at test time we compute

the expected value over the softmax-normalized output

probabilities of the |Y | neurons

E(O) =

|Y |∑
i=1

yi · oi, (2)

where O = {1, 2, ..., |Y |} is the |Y |-dimensional out-

put layer and oi ∈ O is the softmax-normalized out-

put probability of neuron i. Experimental results show

that this formulation increases robustness during train-

ing and accuracy during testing. Additionally it allows

some interpretation of the output probability distribu-

tion to estimate the confidence of the prediction, which

is not possible when training directly for regression.

3.5 Implementation details

Depending on the experiment, the CNN is trained for

regression or classification. In the case of classification
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we report both the performance when testing for classi-

fication, i.e. the predicted age is the age of the neuron

with the highest probability, and the expected value

over the softmax normalized output probabilities.

When training the CNN for classification instead of

regression, the age ranges are formed in two different

ways: a) uniform ranges such that each age range covers

the same number of years and b) balanced ranges where

each age range covers approximately the same number

of training samples.

For all experiments the CNN is initialized with the

weights from training on ImageNet. This model is then

further pre-trained on the IMDB-WIKI dataset for clas-

sification with 101 output neurons and uniform age

ranges. Finally the CNN is trained on the dataset to

test on.

We split the training set into 90% for learning the

weights and 10% for validation during the training phase.

The training is terminated when then network begins

to over-fit on the validation set. All experiments start

with the pre-trained ImageNet weights from [48]. For

any fine-tuning the learning rate for all layers except

the last layer is set to 0.0001. As we change the number

of output neurons, the weights of the last layer are ini-

tialized randomly. To allow quick adjustment of those

new weights, we set the learning rate for the output

layer to 0.001. We train with a momentum of 0.9 and

a weight decay of 0.0005. The learning rate is reduced

every 10 passes through the entire data by a factor of

10.

The models are trained using the Caffe framework [30]

on Nvidia Titan X GPUs. Training on the IMDB-WIKI

and CACD datasets took several days whereas fine-

tuning on the smaller datasets took only a couple of

hours.

3.6 Parameters for output layer

Both Tab. 1 and Fig. 3 show how varying the number

of output neurons and the prediction of ranges of age

affects the performance. For all the settings we use LAP

train data for training and report on the LAP validation

data. Note that for the case where the settings are kept

identical with the IMDB-WIKI pre-training which was

done with 101 output neurons and uniform balancing,

we additionally report performance for the case when

the last layer is reinitialized when training on the LAP

dataset. There seems to be a sweet spot, i.e. too many

neurons result into too little training data per neuron

and at the same time too few neurons lack a fine-grained

ranges of the ages and thus make prediction less precise.

Surprisingly, with 10 output neurons the performance is

still very good despite the large distance in age between

the neurons. Balanced ranges seems to perform slightly

better than uniform ranges, especially when combined

with few neurons.

For reference in Tab. 1 we report the performance

when employing standard Support Vector Regression

(SVR) with RBF kernel and ε-insensitive loss function

on deep features extracted from the last pooling layer

(conv5 3), last (fc7) and penultimate (fc6) fully con-

nected layer of our deep architecture without and with

pre-training on IMDB-WIKI dataset. As expected the

specialized layers lead to better performance than the

more generic pooling layer when the network is adapted

to the age estimation task, otherwise the more generic

pooling layer provides better features for SVR. With

IMDB-WIKI pretraining, SVR on fc7 is slightly below

the direct application of the network learned for appar-

ent age regression.

4 Experiments

In this section we present the experimental results. We

first introduce the datasets used. In the following we

present both quantitative as well as qualitative results.

We conclude the section with a discussion about the

results.

4.1 Datasets

In this paper we use 5 different datasets for real (biolog-

ical) and apparent age. Fig. 4 depicts exemplar images

for each dataset. Tab. 2 shows the size of each dataset

and the corresponding splits for training and testing.

IMDB-WIKI. We introduce a new dataset for age

estimation which we name IMDB-WIKI. To the best

of our knowledge this is the largest publicly available

dataset for age estimation of people in the wild con-

taining more than half a million labelled images. Most

face datasets which are currently in use (1) are either

small (i.e. tens of thousands of images) (2) contain only

frontal aligned faces or (3) miss age labels. As the amount

of training data strongly affects the accuracy of the

trained models, especially those employing deep learn-

ing, there is a clear need for large datasets. For our

IMDB-WIKI dataset we crawl images of celebrities from

IMDb 1 and Wikipedia 2. For this, we use the list of the

100,000 most popular actors as listed on the IMDb web-

site and automatically crawl from their profiles date of

1 www.imdb.com
2 en.wikipedia.org
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birth, name, gender and all the images related to that

person. Additionally, we crawl all profile images from

pages of people from Wikipedia with the same meta

information.

For both data sources we remove the images that

do not list the year when it was taken in the caption.

Assuming that the images with single faces are likely

to show the celebrity and that the year when it was

taken and date of birth are correct, we are able to as-

sign to each such image the biological (real) age. Es-

pecially the images from IMDb often contain several

people. To ensure that we always use the face of the cor-

rect celebrity, we only use the photos where the second

strongest face detection is below a threshold. Note that

we can not vouch for the accuracy of the assigned age

information. Besides incorrect captions, many images

are stills from movies - movies that can have extended

production times. Nonetheless for the majority of the

images the age labels are correct. In total IMDB-WIKI

dataset contains 523,051 face images: 460,723 face im-

ages from 20,284 celebrities from IMDb and 62,328 from

Wikipedia. Only 5% of the celebrities have more than

100 photos, and on average each celebrity has around

23 images.

We make the dataset publicly available at

http://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/.

We also release pre-trained models. Note that this dataset

can also be used for gender classification. We provide

the entire image, the location of the face, its score and

the score of the second most confident face detection.

FG-NET. The Face and Gesture Recognition Research

Network (FG-NET) [42] aging database consists of 1002

color and greyscale images which were taken in a totally

uncontrolled environment. On average there are 12 im-

ages for each of the 82 subjects, whose age ranges from 0

to 69. For evaluation we adopt the setup of [55, 23, 1, 4].

They use leave-one person-out (LOPO) cross validation

and report the average performance over the 82 splits.

MORPH. The Craniofacial Longitudinal Morphologi-

cal Face Database (MORPH) [44] is the largest publicly

available longitudinal face database containing more

than fifty thousand mug shots. For our experiments we

adopt the a setup often used in the literature [1, 4, 23,

53, 46], where a subset of 5,475 photos is used whose

age ranges from 16 to 77. For evaluation, the dataset

is randomly divided into 80% for training and 20% for

testing. Some works [22, 29] use different splits. We still

report them, however they are not directly comparable.

CACD. The Cross-Age Celebrity Dataset (CACD) [2]

contains 163,446 images from 2,000 celebrities collected

from the Internet. The images are collected from search

engines using celebrity name and year (2004-2013) as

keywords. The age is estimated using the query year

and the known date of birth. The dataset splits into

3 parts, 1800 celebrities are used for training, 80 for

validation and 120 for testing. The validation and test

sets are cleaned whereas the training set is noisy. In our

experiments we report results on the test set.

LAP. The ChaLearn LAP dataset [10] contains 4699

images collectively age labeled using two web-based ap-

plications. According to the organizers of the LAP chal-

lenge this is the largest dataset on apparent age estima-

tion. Each age label is the averaged opinion of at least

10 independent users. Additionally, the standard devi-

ation σ is also provided for each age label. The LAP

dataset is split into 2476 images for training, 1136 im-

ages for validation and 1087 images for testing. The age

distribution is very similar in all the three sets of the

LAP dataset. Regarding the distribution of ages, the

LAP datasets covers the 20−40 years interval the best.

For the [0, 15] and [65, 100] age intervals it suffers from

a small number of images per year.

As Fig. 5 depicts, the distribution of age between

the datasets differs greatly. FG-NET contains images

with by far the youngest people. MORPH has 2 peeks,

one around early 20s and one at 40, suggesting that

the images come from two data sources. CACD has few

images from people below 20 or above 60 but is very

balanced between those ages. The majority of face im-

ages on Wikipedia seem to show people slightly younger

than on IMDb. In contrast Wikipedia has a long tail for

old ages. The combined IMDB-WIKI dataset then fol-

lows a very similar distribution to the IMDb dataset as

the ratio between IMDB and WIKI images is about 8 to

1. LAP and WIKI datasets have similar distributions.

4.2 Quantitative results

In this section we report quantitative results of our pro-

posed DEX method for biological and apparent age es-

timation. Additionally the results from the ChaLearn

Looking at People (LAP) 2015 challenge [10] on appar-

ent age estimation are presented.

4.2.1 Apparent age estimation

We report performance of our DEX method for appar-

ent age estimation. Tab. 1 summarizes the results when

testing on the validation set of the LAP dataset.

The best performance for pre-training on the IMDB-

WIKI dataset and taking the expected value reaches

0.282 ε-error (MAE 3.252) compared to 0.456 ε-error

(MAE 5.369) when training directly on the LAP dataset.

http://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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IMDB
25 / ? 36 / ? 14 / ? 51 / ?

WIKI
66 / ? 34 / ? 54 / ? 18 / ?

FG-NET [42]
0 / ? 18 / ? 38 / ? 61 / ?

MORPH [44]
57 / ? 53 / ? 29 / ? 23 / ?

CACD [2]
18 / ? 23 / ? 55 / ? 58 / ?

LAP [10]
59 / 57 37 / 35 65 / 51 20 / 29

Fig. 4 Real / Apparent age of exemplar images for each
dataset

Fig. 5 Age distribution of people for all 5 datasets.

Training for regression instead performs worse at 0.475 ε-

error (MAE 5.586) and 0.310 ε-error (MAE 3.650), re-

spectively.

4.2.2 Looking at people (LAP) challenge

Our DEX method is the winner of the ChaLearn Look-

ing at People (LAP) 2015 challenge [10] on apparent

age estimation with 115 registered teams, significantly

Table 2 The proposed method is evaluated on 5 datasets.
This table shows the number of images per dataset and the
corresponding training and testing split.

Dataset Number of images
IMDB-WIKI 523,051

IMDB 460,723
Wikipedia 62,328
IMDB-WIKI Train 260,282

FG-NET [42] 1,002
Train 990 (average)
Test 12 (average)

MORPH [44] 55,134
Train 4,380
Test 1,095

CACD [2] 163,446
Train 145275 (1800 celebs)
Val 7600 (80 celebs)
Test 10571 (120 celebs)

LAP [10] 4,691
Train 2,476
Val 1,136
Test 1,079

outperforming the human reference. The challenge had

two phases: development and test.

Development phase. In this phase the training and

validation images of the LAP dataset are accessible.

For the training set the apparent age labels are known,

whereas for the validation set they are not released. The

teams are able to submit their predictions for the vali-

dation images to a server to get the overall performance

on those images. A public score board shows the lat-

est performance of each team. As the previous score of

each team is overwritten we build a crawler to check the

score board every couple of seconds. Fig. 6 shows the

scores over the last month of the development phase.

It can be clearly seen that as the end of the phase ap-

proaches the teams steadily improve their performance.

Test phase. This is the final phase of the competition.

The organizers of the challenge release the apparent age

labels for the validation set and the images for the fi-

nal test set. Now the algorithm is re-trained on both

training and validation images to then predict the ap-

parent age on the final test set. Our final results are

obtained by training a full ensemble of 20 CNNs with

101 age bins on the training and validation images and

then averaging the 20 predictions for each of the test

images. Note that for all other results in this paper we

report the performance of a single CNN.

Final results. Fig. 3 shows the final ranking of the

competition. The best 4 methods achieve performance

above the human reference of an ε-error of 0.34, as

reported by the organizers. Our method is the only
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Fig. 6 One month validation entries for LAP challenge. For
the top 3 teams we plot the best scores curves. CVL ETHZ
is ours.

Table 3 ChaLearn LAP 2015 [10] final ranking on the test
set. 115 registered participants. AgeSeer does not provide
codes. The human reference is the one reported by the or-
ganizers.

Rank Team ε error
1 CVL ETHZ (ours) [45] 0.264975
2 ICT-VIPL [37] 0.270685
3 AgeSeer 0.287266
3 WVU CVL [62] 0.294835
4 SEU-NJU [57] 0.305763

human reference 0.34
5 UMD 0.373352
6 Enjuto 0.374390
7 Sungbin Choi 0.420554
8 Lab219A 0.499181
9 Bogazici 0.524055
10 Notts CVLab 0.594248

method within the top 6 methods which does not em-

ploy facial landmarks.

4.2.3 Real age estimation

In this section we present the performance of our pro-

posed method for estimating the real (biological) age.

In recent years, both the FG-NET and MORPH dataset

have become the standard benchmark for the existing

methods.

On the MORPH dataset, our DEX method achieves

a mean average error (MAE) of 3.25 when just fine-

tuning the CNN on the training MORPH data. This

improves over previous state-of-the-art reported in [46]

by 0.2 years (see Tab. 4). Additional fine-tuning on our

IMDB-WIKI dataset before fine-tuning on the MORPH

dataset leads to a MAE of 2.68 years. To the best of our

knowledge this is the first work reporting an error below

3 years on this common evaluation setup for MORPH,

improving over the state-of-the-art by nearly 0.8 years.

Table 4 Comparison results (MAE) for real (biological) age
estimation. Our DEX method achieves the state-of-the-art
performance on the MORPH and FG-NET standard datasets
(*different split, **landmark pre-training).

Method MORPH 2 [44] FG-NET [42]
Human workers [26] 6.30 4.70
DIF [26] 3.80* 4.80
AGES [18] 8.83 6.77
MTWGP [61] 6.28 4.83
CA-SVR [4] 5.88 4.67
SVR [23] 5.77 5.66
OHRank [1] 5.69 4.85
DLA [53] 4.77 4.26
[29] 4.25* N/A
[21] 4.18* N/A
[22] 3.92* N/A
[38] N/A 4.37*
[39] N/A 4.12**
[59] 3.63* N/A
[46] 3.45 5.01
DEX 3.25 4.63
DEX (IMDB-WIKI) 2.68 3.09

On the FG-NET dataset, without fine-tuning on

IMDB-WIKI we achieve 4.63 years. Note that the larger

error is due to the fact that FG-NET is a very small

dataset ( 1000 images) and thus training a CNN on it is

difficult. However, training on the IMDB-WIKI dataset

before fine-tuning on FG-NET leads to a MAE of 3.09

years. This improves over DLA [53] by more than 1 year

in average error. The results are summarized in Tab. 4.

On the CACD dataset [2] we run additional experi-

ments. The results are shown in Tab. 5. In comparison

to MORPH and FG-NET the CACD dataset is much

larger but not manually annotated. When training on

the 145,275 training images we achieve a MAE of 4.785

years. When only training on the manually cleaned vali-

dation set with 7600 images the performance drops to a

MAE of 6.521. This suggests that having a large train-

ing set with slightly imprecise labels results in better

performance than a carefully annotated dataset of much

smaller size.

Table 5 DEX results (MAE) on CACD dataset.

Training on CACD [2]
Train 4.785
Val 6.521

4.2.4 Age group estimation

Besides real age estimation, we also evaluate our ap-

proach for predicting age groups. This is a somewhat

simpler task as the goal is to predict whether a per-

son’s age falls within some range instead of predicting

the precise biological age. We evaluate the performance

on the Adience dataset [9] which consists of 26,580 im-

ages from 2,284 subjects from Flickr. The dataset has
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8 age groups (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53,

60- years) and we report the results on the 5-fold cross

validation proposed by the authors of the dataset. For

this task we train our network for classification with

8 classes and report the exact accuracy (correct age

group predicted) and 1-off accuracy (correct or adja-

cent age group predicted). We report results with and

without pre-training on IMDB-WIKI. As it can be seen

in Tab. 6 we achieve an accuracy of 64.0% compared to

the previous state-of-the-art of 50.7%. When predicting

the 1-off accuracy we achieve 96.6%, i.e. our model is

nearly always able to predict at least the adjacent age

group.

Table 6 Age group estimation results (mean accuracy[%]±
standard deviation) on Adience benchmark [9].

Method Exact 1-off
DEX w/ IMDB-WIKI pretrain 64.0 ± 4.2 96.6 ± 0.9
DEX w/o IMDB-WIKI pretrain 55.6 ± 6.1 89.7 ± 1.8
Best from [36] 50.7 ± 5.1 84.7 ± 2.2
Best from [9] 45.1 ± 2.6 79.5 ± 1.4

4.3 Insight experiments

In the following we present various insight experiments.

These experiments are both quantitative and qualita-

tive and give a deeper understanding of the method.

Visual assessment. Fig. 7 shows examples of face

images in the wild (from LAP dataset) with good age

estimation by our DEX with a single CNN. We ob-

serve that in these cases also the faces are aligned very

well. Failure cases are also shown in Fig. 7. The failures

are mostly caused by a failure in the detection stage

(i.e. wrong or no face detected) or difficult conditions

due to glasses, other forms of occlusions, or bad light-

ning.

Dataset bias. In Fig. 8 we reveal the existence of a

dataset bias. By testing the trained models on a dataset

other than it was trained for (trained on LAP and

tested on MORPH, and vice versa) we show the biases

which come with each dataset. In Fig. 8 (a) we show the

distribution of predicted ages on LAP dataset for two

models trained on MORPH dataset and LAP dataset,

resp., and of the LAP dataset. The LAP model follows

the distribution of the dataset and has the better MAE.

In contrast the MORPH model exhibits a bi-modal dis-

tribution which is more similar to the MORPH dataset

(cf. Fig. 8 (b)). A similar behavior is observed when

testing both models on the MORPH dataset (see Fig. 8

(b)). In Fig. 8 (c,d) the individual errors for each test

image are plotted. The images are sorted according to

the original dataset, i.e. in Fig. 8(c) when testing on

LAP they are sorted according to the error of the model

trained on LAP. On LAP dataset, in Fig. 8(c), it can be

seen that even though the error of the MORPH model

is bigger overall, its predictions follow the curve of the

LAP trained model and thereby both models similarly

over- or underestimate the age of a person. A similar

reasoning applies to the plots in Fig. 8(d).

Important face regions. In order to determine which

parts of a face image correlate and contribute the most

to the overall age estimation accuracy we devise the

following experiment. We systematically occlude a ver-

tical or horizontal strip of the image by setting it to the

mean image, as in [60]. Each of the 20 strips has a width

of 10% of the input face image. In Fig. 10 (a) we report

the MAE on the LAP dataset (validation images) for

each of the vertical or horizontal strip occlusions. The

results are intuitive, occlusions in the face area from

the eyes to the chin and between ears affect the most

the estimation accuracy. The results show that occlud-

ing the eyes with a horizontal strip increases the MAE

the most, suggesting that the eyes are the most impor-

tant indicator for age in the human face. The eyes are

seconded by the horizontal strip region passing the up-

per lip and bottom of the nose. At the same time the

horizontal strip occlusions lead to larger MAE than the

vertical ones. A reason for this is that the face has hor-

izontal symmetry and therefore for vertical occlusions

except the strip that passes through the center of the

face, there is always a corresponding symmetrical strip

that is not occluded providing important information

to the CNN model.

Robustness to block occlusions. To determine the

robustness of our solution to occlusion we apply a block

occlusion mask at random locations in the input face

image. We report the MAE over the LAP dataset as

the size of the occluded area is increased in Fig. 10

(b). When less than 20% of the image is occluded the

MAE is still low, i.e. the trained CNN is robust to those

fairly small occlusions. Above 40% occlusion the MAE

performance rapidly deteriorates.

CNN model visualization. Fig. 10 (c) shows a t-

Distributed Stochastic Neighbor Embedding (t-SNE) [40]

of the last fully connected layer of the model trained

on the LAP dataset for the validation images. The fea-

ture vector of dimensionality 4096 is preprocessed using

PCA to a dimensionality of 50. The visualization shows

the test images for a perplexity of 10. We further cluster

the embedded data into 20 clusters and report the aver-

age age of each cluster. The separation of images by age

suggests that the features learned are discriminative for

age prediction.

CNN activations. Fig. 9 shows the activation across

our CNN trained on LAP for a test image using a color

heatmap. The color indicates the maximum activation
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Input

Aligned
Apparent 57 40 50 30 79 12 57 62 11 20 40 23 15
Predicted 57.75 39.43 49.15 32.06 78.99 12.78 27.50 43.23 26.35 34.07 26.63 35.81 27.25

Fig. 7 Examples of face images with good and bad age estimation by DEX.

(a) Distribution of (b) Distribution of (c) Error on LAP dataset (d) Error on MORPH dataset
predicted age on LAP dataset predicted age on MORPH dataset sorted by LAP model error sorted by MORPH model error

Fig. 8 Dataset bias of LAP and MORPH.

Image Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13
Fig. 9 Activation across CNN for a test image. The color indicates the maximum activation for any feature map for a particular
layer.

(a) Systematic occlusion of horizontal and (b) Impact of random occlusion of (c) t-SNE embedding and
vertical strips on test images and its test image on the performance (MAE). average age per cluster.

impact on the MAE (inspired by [60]).

Fig. 10 In depth experiments and visualization of CNN models.

energy for any feature map for a particular layer. In

the first couple of layers the face of the person can still

be recognized and we can generally have the intuition

that the neurons corresponding to the face region and

the face edges activate the most. However, as we go

deeper into the CNN the representation becomes more

abstract and difficult to interpret.

4.4 Discussion

The proposed DEX method shows state-of-the-art re-

sults on MORPH and FG-NET for biological age and

LAP for apparent age. Training the CNN for classifi-

cation instead of regression not only improves perfor-

mance but also stabilizes the training process. Without

relying on landmarks and by robustly handling small

occlusions the proposed method confirms its applicabil-

ity for age estimation in the wild. Pre-training on the

IMDB-WIKI dataset results in a large boost in perfor-

mance suggesting that the lack of a larger dataset for

age estimation was overdue for a long time.

In future work the training dataset could be further

enlarged. Fine-tuning the face detector on the target

dataset can reduce the failure rate of the face detection

step. Using a very robust landmark detector can lead
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to better alignment. The recently introduced Residual

Nets by [28] with more than 150 layers show that an

even deeper architecture than VGG-16 might help to

improve performance if sufficient training data is avail-

able. Though at the same time the work suggests that

there is an optimal depth, as the network with 1000

layers performs worse.

Ultimately the proposed DEX pipeline can be used

for other prediction tasks of facial features including

gender, ethnicity, attractiveness or attributes (i.e. does

the person have glasses, a beard, blond hair).

5 Conclusions

In this paper we proposed a solution for real and ap-
parent age estimation. Our Deep EXpectation (DEX)
formulation builds upon a robust face alignment, the
VGG-16 deep architecture and a classification followed
by a expected value formulation of the age estimation
problem. Another contribution is IMDB-WIKI, the largest
public face images dataset to date with age and gen-
der annotations. We validate our solution on standard
benchmarks and achieve state-of-the-art results.
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