

RePaint: Inpainting using Denoising Diffusion Probabilistic Models

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool

Input Image.

Remove this part.

Start with Noise.

Guide denoising with known region.

Guide denoising with known region.

Guide denoising with known region.

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

 x_0

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

 $q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I})$$

 $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

 $p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

Resampling

Input

n = 1

Resampling Sched

Generation Step $x_{t-1}^{\text{known}} \sim \mathcal{N}(\sqrt{\overline{\alpha}_{t}}x_{0}, (1 - \overline{\alpha}_{t})\mathbf{I})$ $x_{t-1}^{\text{unknown}} \sim \mathcal{N}(\mu_{\theta}(x_{t}, t), \Sigma_{\theta}(x_{t}, t))$ $x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1 - m) \odot x_{t-1}^{\text{unknown}}$ Undo Step $q(x_{t}|x_{t-1}) = \mathcal{N}(x_{t}; \sqrt{1 - \beta_{t}}x_{t-1}, \beta_{t}\mathbf{I})$

Resampling

Input

n = 3

n = 4 n = 5 n = 10 n = 20

Resampling Jumps

- With increasing resampling
 - The semantic consistency improves
 - The image becomes blurrier
- When increasing the transition step length
 - Semantic consistency is not influenced
 - Images are less blurry

SOTA Comparison CelebA-HQ

SOTA Comparison ImageNet

SOTA Comparison Places2

SOTA Comparison

CelebA-HQ	Wide		Narrow		Super-Resolve $2\times$		Altern. Lines		Half		Expand	
Methods	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]
AOT [43]	0.104	11.6 ± 2.0	0.047	12.8 ± 2.1	0.714	1.1 ± 0.6	0.667	2.4 ± 1.0	0.287	9.0 ± 1.8	0.604	8.3 ± 1.7
DSI [26]	0.067	16.0 ± 2.3	0.038	22.3 ± 2.6	0.128	5.5 ± 1.4	0.049	5.1 ± 1.4	0.211	4.5 ± 1.3	0.487	4.7 ± 1.3
ICT [34]	0.063	27.6 ± 2.8	0.036	30.9 ± 2.9	0.483	4.2 ± 1.2	0.353	0.7 ± 0.5	0.166	12.7 ± 2.1	0.432	8.8 ± 1.8
DeepFillv2 [39]	0.066	23.9 ± 2.6	0.049	21.0 ± 2.5	0.119	9.8 ± 1.8	0.049	10.6 ± 1.9	0.209	4.1 ± 1.2	0.467	13.1 ± 2.1
LaMa [32]	0.045	41.8 ± 3.1	0.028	33.8 ± 3.0	0.177	5.5 ± 1.4	0.083	20.6 ± 2.5	0.138	35.6 ± 3.0	0.342	24.7 ± 2.7
RePaint	0.059	Reference	0.028	Reference	0.029	Reference	0.009	Reference	0.165	Reference	0.435	Reference
ImageNet	Wide		Narrow		Super-Resolve $2\times$		Altern. Lines		Half		Expand	
Methods LE	PIPS V	otes [%] []	PIPS \	Totes [%] I		Votes [%]	LPIPS	Votes [%]	I PIPS	Votes [%]	LPIPS	Votes [%]

ImageNet	et wide		Narrow		Super-Resolve $2\times$		Altern. Lines		Half		Expand	
Methods	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]
DSI [26]	0.117	31.7 ± 2.9	0.072	28.6 ± 2.8	0.153	26.9 ± 2.8	0.069	23.6 ± 2.6	0.283	31.4 ± 2.9	0.583	9.2 ± 1.8
ICT [34]	0.107	42.9 ± 3.1	0.073	33.0 ± 2.9	0.708	1.1 ± 0.6	0.620	6.6 ± 1.5	0.255	51.5 ± 3.1	0.544	25.6 ± 2.7
LaMa [32]	0.105	42.4 ± 3.1	0.061	33.6 ± 2.9	0.272	13.0 ± 2.1	0.121	9.6 ± 1.8	0.254	41.1 ± 3.1	0.534	20.3 ± 2.5
RePaint	0.134	Reference	0.064	Reference	0.183	Reference	0.089	Reference	0.304	Reference	0.629	Reference

- Use of Diffusion Models that were trained class conditionally
- RePaint creates meaningful images for different classes

- Use of Diffusion Models that were trained class conditionally
- RePaint creates meaningful images for different classes

- Use of Diffusion Models that were trained class conditionally
- RePaint creates meaningful images for different classes

- Use of Diffusion Models that were trained class conditionally
- RePaint creates meaningful images for different classes

Input

t=100

git.io/RePaint