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Metrics

§ Photo-Realism: User Study
§ Low-Resolution Consistency: LR-PSNR above 45dB
§ Diversity Score: New Metric



§ Challenging to measure Diversity
§ Naive metric: Pixel-wise standard deviation

§ Does not behave well
§ Easy to maximize by adding noise
§ In some cases, we don’t want diversity (e.g. sky)
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§ How can we measure diversity?
§ Challenge:

§ We have one GT
§ High dimensionality
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§ Approach
§ Sample many SR
§ Fill the space of plausible SRs
§ Can get close to the GT?
§ Compute on a pixel-wise level
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Diversity Metric

3. Evaluation Protocol

A method is evaluated by first predicting a set of 10 ran-
domly sampled SR images for each low-resolution image
in the dataset. From this set of images, evaluation metrics
corresponding to the three criteria above will be considered.
The participating methods will be ranked according to each
metric. These ranks will then be combined into a final score.
The three evaluation metrics are described next.

3.1. Photo-realism

Automatically assessing photo-realism and image qual-
ity is an extremely difficult task. All existing methods have
severe shortcomings. As a very rough guide, the partici-
pants were asked to use the LPIPS distance [62]. However,
the participants were notified that a human study will be
conducted to finally evaluate photo-realism on the test set,
and thus beware of overfitting to the LPIPS metric, as that
can lead to worse results.
User Study To assess the photo-realism, a human study is
performed on the test set for the final submission. The user
is asked to rank crops according to how photo-realistic they
seem for them. As a reference, the user is shown the region
around this crop. To obtain an unbiased opinion, we sample
the crop coordinates uniformly within the images. In total,
we evaluate three crops of size 80⇥80 per image of the 100
DIV2K test set images. Every task is done by five different
users, resulting in 1500 completed tasks in total. We report
the Mean Opinion Rank (MOR) for the user study,

3.2. The spanning of the SR Space

The goal is to generate SR samples that provide mean-
ingful diversity. While, for instance, the pixel-wise stan-
dard deviation within the set of generated SR samples mea-
sures variations, this variation is not necessarily meaning-
ful. For example, an SR method should be able to easily
super-resolve a uniform patch of sky with high accuracy.
Since all surrounding pixels in the LR image have very sim-
ilar color, the SR method can confidently predict the corre-
sponding pixels of the underlying HR image. Hence, the
SR model should generate low diversity in this case. On
the other hand, such confidence cannot be achieved when
super-resolving e.g. the fine structures in a patch of fo-
liage. The LR image does not contain all information for re-
constructing the exact arrangement of leaves and branches.
Even when leveraging learned priors, there are thus multi-
ple plausible predictions of the foliage texture. In this case,
we want the network to span the space of possibilities.

From the aforementioned discussion, it is clear that di-
versity is not a quantity that should be simply maximized
(or minimized). Instead, the model should learn meaningful
diversity, corresponding to the uncertainty in the SR predic-
tion. Simple metrics, such as pixel-wise standard deviation,

are therefore not suitable. Instead, we propose a new metric,
aiming to measure how well the network spans the space of
possibilities.

The challenge in measuring the aforementioned ability
lies in that we only have access to a single ground-truth
HR sample for every LR image. However, this single sam-
ple should lie inside the solution space spanned by the SR
model. The proposed metric aims at measuring how well
the ground-truth SR image is represented in the predicted
space. When following this strategy, the main challenge
arises from the high dimensionality of the HR image space.
Our key observation is that this can be mitigated by per-
forming the analysis on smaller patches. That is, a single
HR image is decomposed into multiple smaller (potentially
overlapping) patches. This effectively reduces the dimen-
sionality of the output space, allowing us to evaluate the
quality of the predicted SR space from a very limited num-
ber of random samples.

Let yk 2 RN⇥N⇥3 be the k-th patch in the original
HR ground-truth image y. We denote the M number of
predictions generated by the SR model as {ŷi}Mi=1 and let
ŷik 2 RN⇥N⇥3 be the corresponding decomposition into
patches. We measure the similarity between two image
patches with a distance metric d. To obtain the meaningful
diversity that the samples represent, we calculate how much
the minimum distance to the ground-truth patch decreases
when using M samples,
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This choice still yields a score in the range SM 2 [0, 1],
where SM = 0 means no diversity and SM = 1 means
that the ground-truth HR image was exactly captured by one
of the generated samples. In the tables, we report SM in
percent.

To compute the final diversity score, we average the rela-
tive score (1) over all images in the dataset. For the distance
metric d, we experimented with both L2 (i.e. mean squared
error) and LPIPS [62]. We found the latter to be a more well
suited metric for image patches, and therefore use it for our
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i
k)

)M

i=1

. (2)

This choice still yields a score in the range SM 2 [0, 1],
where SM = 0 means no diversity and SM = 1 means
that the ground-truth HR image was exactly captured by one
of the generated samples. In the tables, we report SM in
percent.

To compute the final diversity score, we average the rela-
tive score (1) over all images in the dataset. For the distance
metric d, we experimented with both L2 (i.e. mean squared
error) and LPIPS [62]. We found the latter to be a more well
suited metric for image patches, and therefore use it for our

Base distance (minimal image-wise metric)
SR of the kth patch
GT

3. Evaluation Protocol

A method is evaluated by first predicting a set of 10 ran-
domly sampled SR images for each low-resolution image
in the dataset. From this set of images, evaluation metrics
corresponding to the three criteria above will be considered.
The participating methods will be ranked according to each
metric. These ranks will then be combined into a final score.
The three evaluation metrics are described next.

3.1. Photo-realism

Automatically assessing photo-realism and image qual-
ity is an extremely difficult task. All existing methods have
severe shortcomings. As a very rough guide, the partici-
pants were asked to use the LPIPS distance [62]. However,
the participants were notified that a human study will be
conducted to finally evaluate photo-realism on the test set,
and thus beware of overfitting to the LPIPS metric, as that
can lead to worse results.
User Study To assess the photo-realism, a human study is
performed on the test set for the final submission. The user
is asked to rank crops according to how photo-realistic they
seem for them. As a reference, the user is shown the region
around this crop. To obtain an unbiased opinion, we sample
the crop coordinates uniformly within the images. In total,
we evaluate three crops of size 80⇥80 per image of the 100
DIV2K test set images. Every task is done by five different
users, resulting in 1500 completed tasks in total. We report
the Mean Opinion Rank (MOR) for the user study,

3.2. The spanning of the SR Space

The goal is to generate SR samples that provide mean-
ingful diversity. While, for instance, the pixel-wise stan-
dard deviation within the set of generated SR samples mea-
sures variations, this variation is not necessarily meaning-
ful. For example, an SR method should be able to easily
super-resolve a uniform patch of sky with high accuracy.
Since all surrounding pixels in the LR image have very sim-
ilar color, the SR method can confidently predict the corre-
sponding pixels of the underlying HR image. Hence, the
SR model should generate low diversity in this case. On
the other hand, such confidence cannot be achieved when
super-resolving e.g. the fine structures in a patch of fo-
liage. The LR image does not contain all information for re-
constructing the exact arrangement of leaves and branches.
Even when leveraging learned priors, there are thus multi-
ple plausible predictions of the foliage texture. In this case,
we want the network to span the space of possibilities.

From the aforementioned discussion, it is clear that di-
versity is not a quantity that should be simply maximized
(or minimized). Instead, the model should learn meaningful
diversity, corresponding to the uncertainty in the SR predic-
tion. Simple metrics, such as pixel-wise standard deviation,

are therefore not suitable. Instead, we propose a new metric,
aiming to measure how well the network spans the space of
possibilities.

The challenge in measuring the aforementioned ability
lies in that we only have access to a single ground-truth
HR sample for every LR image. However, this single sam-
ple should lie inside the solution space spanned by the SR
model. The proposed metric aims at measuring how well
the ground-truth SR image is represented in the predicted
space. When following this strategy, the main challenge
arises from the high dimensionality of the HR image space.
Our key observation is that this can be mitigated by per-
forming the analysis on smaller patches. That is, a single
HR image is decomposed into multiple smaller (potentially
overlapping) patches. This effectively reduces the dimen-
sionality of the output space, allowing us to evaluate the
quality of the predicted SR space from a very limited num-
ber of random samples.

Let yk 2 RN⇥N⇥3 be the k-th patch in the original
HR ground-truth image y. We denote the M number of
predictions generated by the SR model as {ŷi}Mi=1 and let
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the ground-truth SR image is represented in the predicted
space. When following this strategy, the main challenge
arises from the high dimensionality of the HR image space.
Our key observation is that this can be mitigated by per-
forming the analysis on smaller patches. That is, a single
HR image is decomposed into multiple smaller (potentially
overlapping) patches. This effectively reduces the dimen-
sionality of the output space, allowing us to evaluate the
quality of the predicted SR space from a very limited num-
ber of random samples.

Let yk 2 RN⇥N⇥3 be the k-th patch in the original
HR ground-truth image y. We denote the M number of
predictions generated by the SR model as {ŷi}Mi=1 and let
ŷik 2 RN⇥N⇥3 be the corresponding decomposition into
patches. We measure the similarity between two image
patches with a distance metric d. To obtain the meaningful
diversity that the samples represent, we calculate how much
the minimum distance to the ground-truth patch decreases
when using M samples,

SM =
1

d̄M

 
d̄M � 1

K

KX

k=1

min
�
d(yk, ŷ

i
k)
 M

i=1

!
. (1)

Note that the right term evaluates the average distance to the
closest of the M patches. To obtain a relative improvement
measure, we normalize it w.r.t. to a base distance d̄M com-
puted over the M samples. One alternative is to set the base
distance to simply the average d̄M = 1

KM

P
k,i d(yk, ŷ

i
k).

However, such a reference distance is sensitive to outliers.
We therefore compute d̄M by finding the minimum distance
on a global sample level,

d̄M = min

(
1

K

KX

k=1

d(yk, ŷ
i
k)

)M

i=1

. (2)

This choice still yields a score in the range SM 2 [0, 1],
where SM = 0 means no diversity and SM = 1 means
that the ground-truth HR image was exactly captured by one
of the generated samples. In the tables, we report SM in
percent.

To compute the final diversity score, we average the rela-
tive score (1) over all images in the dataset. For the distance
metric d, we experimented with both L2 (i.e. mean squared
error) and LPIPS [62]. We found the latter to be a more well
suited metric for image patches, and therefore use it for our
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Approaches

Generative formulation Additional

Team Flow GAN VAE IMLE Diffusion Data

Deepest X X
IMAG WZ X X
IMAG ZW X X
Deepest (21) X X
FutureReference X X
SR DL X X
SSS X X

Table 1. Information about the participating teams in the challenge.

2.1. Overview

The challenge contains two tracks, targeting 4⇥ and 8⇥
super-resolution respectively. Evaluation code and informa-
tion about the challenge were provided at the public GitHub
page http://git.io/SR22. The challenge uses the
train, validation and testing sets as defined in employs the
DIV2k [1]. As the final result, the participants in the chal-
lenge were asked to submit 10 super-resolution samples for
each given LR image.

2.2. Rules

To guide the research towards useful and generalizable
techniques, submissions needed to adhere to the following
rules.

• The method must be able to generate an arbitrary num-
ber of diverse samples. That is, the method cannot be
limited to a maximum number of different SR sam-
ples (corresponding to e.g. a certain number of differ-
ent output network heads).

• All SR samples must be generated by a single model.
That is, no ensembles are allowed.

• No self-ensembles or test-time data augmentation
(flipping, rotation, etc.).

• All SR samples must be generated using the same
hyper-parameters. That is, the generated SR samples
shall not be the result of different choices of hyper-
parameters during inference.

• Submissions of deterministic methods were allowed.
However, they will naturally score zero in the diversity
measure and therefore not be able to win the challenge.

• Other than the validation and test split of the DIV2k
dataset, any training data or pre-training is allowed.

Furthermore, all participants were asked to submit the code
of their solution along with the final results.

2.3. Challenge phases

The challenge started on the 7th of February 2022 with
providing the task, evaluation scripts, training, and evalua-

tion data to the participating teams. After the teams devel-
oped their methods, they received the test input data on the
23rd of March 2022 and submitted their ten predictions per
LR image, description, code, and models until the 30th of
March 2022.

2.4. Data

We provide the standard DIV2K dataset for 4⇥ and 8⇥
for training and validation. For testing, we only provide the
LR images of the test set for both Tracks.

3. Evaluation Protocol

A method is evaluated by first predicting a set of 10
randomly sampled SR images for each low-resolution im-
age in the dataset. Evaluating metrics corresponding to the
three criteria above will be considered from this set of im-
ages. First, the participating methods are ranked according
to each metric. Secondly, these ranks are combined into a
final score. The individual metrics are described below.

3.1. Photo-realism

Computing the perceived difference between two images
as humans perceive them is challenging. As an approxima-
tion, we included the LPIPS distance [65] in the evalua-
tion script that was provided along with the validation set.
For the final measurement of photo-realism, we conducted
a user study to determine the most realistic super-resolution
when seeing the low-resolution image as perceived by hu-
mans.
User Study We use the same user-study protocol as last
year, where we designed it in a way that directly measures
the rank of all methods. Therefore, we created a web in-
terface for the users where they can drag and drop crops of
images into a ranked list according to their perceptual qual-
ity. We hence calculate the final rank by directly applying
the mean over all user answers, resulting in the Mean Opin-
ion Rank (MOR). Consistent with last year’s evaluation, we
use three 80 ⇥ 80 crops for each of the 100 DIV2K test
images and ask five different users per crop.

3.2. The spanning of the SR Space

To evaluate how well a method spans the SR Space, we
measure the diversity of each method. To measure it in
a meaningful way and reduce the potential for adversarial
attacks we use the robust diversity score introduced in the
preceding challenge at NTIRE 2021 [39]. To rehearse the
motivation of this score, we consider two cohorts of images,
first texture-rich like fur, and second flat regions like a patch
of sky.

In a texture-rich image, many high-resolution images are
downsampled to the same low-resolution image spanning
a conditional distribution. We consider this distribution as
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Approaches: Diversity Score 4×

★ DDPM ⚫ Flow     ⬛ VAE    ➕ IMLE    ▲ GAN
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Approaches: Diversity Score 8×

★ DDPM ⚫ Flow     ⬛ VAE    ➕ IMLE    ▲ GAN
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Results – Scale Factor 4×

GT IMAG WZ Deepest IMAG ZW ESRGAN

SSS (GAN) Deepest (Flow, 2021) SRFlow FutureReference (IMLE) SR DL (VAE)
Figure 1. Qualitative comparison between the participating approaches for 4⇥ super-resolution

GT Deepest ESRGAN SSS (GAN)

Deepest (Flow, 2021) FutureReference (IMLE) SR DL (VAE) SRFlow
Figure 2. Qualitative comparison between the participating approaches for 8⇥ super-resolution

vectors to the same high-resolution image. Therefore, it
creates a diverse set of super-resolutions. Furthermore, dif-
ferently from ESRGAN, it was shown that SRFlow creates
super-resolution that are consistent with the input. They
downsampled the super-resolution using the same kernel as
for the training pair generation and measured the PSNR be-
tween those two low-resolution images to show this prop-
erty. The team Deepest worked on the information content
gap between the HR image and the latent space and adopted
frequency separation in this year’s submission. Noteworthy,
the team njtech&seu used multi-head attention in their ap-
proach to NTIRE 21 [39] and scored the highest Diversity
Score in both 4⇥ and 8⇥. However, their perceptual quality

did not suffice to outperform the baseline SRFlow.
Diffusion-Based The teams IMAG ZW and IMAG WZ
submitted methods using diffusion models [21] which are
known to produce highly stochastic output.
GAN-Based The best performing team in terms of diver-
sity and perception of methods that relied on GAN-based
approaches was the team SSS. We observed that GAN ap-
proaches struggled to generate large diversity in their super-
resolutions. Furthermore, the adversarial loss encourages
hallucinations in the super-resolution and therefore reduces
the LR-PSNR. This method did not reach the set threshold
of 45dB and was not considered for the final human study.
VAE-Based Of methods using VAEs for super-resolution,
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Results – Scale Factor 4×

the space of plausible super-resolutions. Since the ground
truth is an element in that distribution and the ideal super-
resolution algorithm samples the whole space, one obtain
an image which is arbitrarily close to the ground truth by
sampling enough images. Therefore, methods that span the
space of plausible super-resolutions gain closeness to the
ground truth when sampling more super-resolutions.

In the case of uniform regions like sky, the super-
resolution methods should not generate a diverse set of
high-resolutions, but only the uniform patch. Methods that
artificially add diversity for such regions generate structures
that are not contained in the original image. Therefore such
attempts do not improve in diversity score with increasing
number of samples and further harms the method for the
perceptual metric described above.

Another aspect being considered is the high-
dimensionality of the high-resolution images. Since
we consider mega-pixel images, the closeness to the
ground truth on the entire image is almost the same for all
samples of stochastic super-resolution methods. Different
samples will have regions that are closer to the ground
truth, and other regions that are closer to another plausible
high-resolution image. Due to the high-dimensionality this
effect evens out for the average distance to the ground truth
when considering multiple samples. Therefore we consider
local patches to measure the diversity score.

The used diversity score is as follows, where M is the
number of sampled super-resolutions, yk the k-th patch in
the original HR image y, and ŷiMi=1 the samples from the
super-resolution method. The detailed derivation can be
found in [39].

SM =
1

d̄M

 
d̄M � 1

K

KX

k=1

min
�
d(yk, ŷ

i
k)
 M

i=1

!
. (1)

3.3. Low Resolution Consistency

To measure how much information is preserved in the
super-resolved image from the low-resolution image, we
measure the LR-PSNR. It is computed as the PSNR be-
tween the input LR image and the predicted sample down-
sampled with the given bicubic kernel. The goal of this
challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams
were required to submit results, code/executables, and fact-
sheets for their approaches. Three teams of the 54 registered
participants submitted to the final test phase. The methods
of the teams that entered the final phase are described in
Section 5 and the teams’ members and affiliations are shown
in Section Appendix A.

4.1. Baselines

As in the first challenge [39], we compare the submitted
method from this and last year to the following baselines.
ESRGAN To compare the submissions with a photo-
realistic super-resolution method, we use ESRGAN [58] as
reference. Since it is deterministic, the diversity score is
zero.
SRFlow As the baseline with diverse super-resolution
output, we use the Flow-based method SRFlow [41]. It
conditions the image generation method [30] for super-
resolution. Different from the ESRGAN, the generated
super-resolution images are highly consistent with the in-
put low-resolution image.

4.2. Architectures and Main Ideas

Here we discuss the main ideas of this and last year’s
submitted methods. The underlying technologies and the
use of external data are indicated in Table 1.
Flow-Based The winning team “Deepest (21)” based their
approach on SRFlow [41] and submitted a modified ver-
sion this year. Their strategy is to train a Normalizing
Flow model to transform a high-resolution image condi-
tioned on a low-resolution image into a latent variable. The
training objective is to minimize the negative log-likelihood
of this latent variable belonging to the gaussian distribu-
tion. For inference, they use the property of Normalizing
Flows [12] that they are invertible. They sample a latent
vector of Gaussian noise and transform it, conditioned on
the low-resolution image to a high-resolution image. Since
the method is bijective, it cannot map two different latent

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

IMAG ZW 0.171 48.14 21.938(3) 3.57(2) 2.5
Deepest 0.126 50.13 28.853(1) 3.67(3) 2.5
IMAG WZ 0.169 45.20 27.320(2) 3.34(1) 1.5

FutureReference (IMLE) 0.165 37.51 19.636 - -
SR DL (VAE) 0.234 39.80 20.508 - -
SSS (GAN) 0.110 44.70 13.285 - -
Deepest (Flow) 0.117 50.54 26.041 - -

SRFlow 0.122 49.86 25.008 3.62 -
ESRGAN 0.124 38.74 0.000 3.52 -
GT 0 1 - 3.15 -

Table 2. Quantitative comparison of participating teams. (4⇥)

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

Deepest 0.257 50.37 26.539 4.510 -

FutureReference (IMLR) 0.291 36.51 17.985 4.741 -
SSS (GAN) 0.237 37.43 13.548 4.850 -
SR DL (VAE-GAN) 0.311 42.28 14.817 4.797 -
Deepest (Flow) 0.259 48.64 26.941 4.503 -

SRFlow 0.282 47.72 25.582 4.775 -
ESRGAN 0.284 30.65 0 4.452 -
GT 0 1 - 3.173 -

Table 3. Quantitative comparison of participating teams. (8⇥)
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Results – Scale Factor 8×

GT IMAG WZ Deepest IMAG ZW ESRGAN

SSS (GAN) Deepest (Flow, 2021) SRFlow FutureReference (IMLE) SR DL (VAE)
Figure 1. Qualitative comparison between the participating approaches for 4⇥ super-resolution

GT Deepest ESRGAN SSS (GAN)

Deepest (Flow, 2021) FutureReference (IMLE) SR DL (VAE) SRFlow
Figure 2. Qualitative comparison between the participating approaches for 8⇥ super-resolution

vectors to the same high-resolution image. Therefore, it
creates a diverse set of super-resolutions. Furthermore, dif-
ferently from ESRGAN, it was shown that SRFlow creates
super-resolution that are consistent with the input. They
downsampled the super-resolution using the same kernel as
for the training pair generation and measured the PSNR be-
tween those two low-resolution images to show this prop-
erty. The team Deepest worked on the information content
gap between the HR image and the latent space and adopted
frequency separation in this year’s submission. Noteworthy,
the team njtech&seu used multi-head attention in their ap-
proach to NTIRE 21 [39] and scored the highest Diversity
Score in both 4⇥ and 8⇥. However, their perceptual quality

did not suffice to outperform the baseline SRFlow.
Diffusion-Based The teams IMAG ZW and IMAG WZ
submitted methods using diffusion models [21] which are
known to produce highly stochastic output.
GAN-Based The best performing team in terms of diver-
sity and perception of methods that relied on GAN-based
approaches was the team SSS. We observed that GAN ap-
proaches struggled to generate large diversity in their super-
resolutions. Furthermore, the adversarial loss encourages
hallucinations in the super-resolution and therefore reduces
the LR-PSNR. This method did not reach the set threshold
of 45dB and was not considered for the final human study.
VAE-Based Of methods using VAEs for super-resolution,
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Results – Scale Factor 8×

the space of plausible super-resolutions. Since the ground
truth is an element in that distribution and the ideal super-
resolution algorithm samples the whole space, one obtain
an image which is arbitrarily close to the ground truth by
sampling enough images. Therefore, methods that span the
space of plausible super-resolutions gain closeness to the
ground truth when sampling more super-resolutions.

In the case of uniform regions like sky, the super-
resolution methods should not generate a diverse set of
high-resolutions, but only the uniform patch. Methods that
artificially add diversity for such regions generate structures
that are not contained in the original image. Therefore such
attempts do not improve in diversity score with increasing
number of samples and further harms the method for the
perceptual metric described above.

Another aspect being considered is the high-
dimensionality of the high-resolution images. Since
we consider mega-pixel images, the closeness to the
ground truth on the entire image is almost the same for all
samples of stochastic super-resolution methods. Different
samples will have regions that are closer to the ground
truth, and other regions that are closer to another plausible
high-resolution image. Due to the high-dimensionality this
effect evens out for the average distance to the ground truth
when considering multiple samples. Therefore we consider
local patches to measure the diversity score.

The used diversity score is as follows, where M is the
number of sampled super-resolutions, yk the k-th patch in
the original HR image y, and ŷiMi=1 the samples from the
super-resolution method. The detailed derivation can be
found in [39].
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3.3. Low Resolution Consistency

To measure how much information is preserved in the
super-resolved image from the low-resolution image, we
measure the LR-PSNR. It is computed as the PSNR be-
tween the input LR image and the predicted sample down-
sampled with the given bicubic kernel. The goal of this
challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams
were required to submit results, code/executables, and fact-
sheets for their approaches. Three teams of the 54 registered
participants submitted to the final test phase. The methods
of the teams that entered the final phase are described in
Section 5 and the teams’ members and affiliations are shown
in Section Appendix A.

4.1. Baselines

As in the first challenge [39], we compare the submitted
method from this and last year to the following baselines.
ESRGAN To compare the submissions with a photo-
realistic super-resolution method, we use ESRGAN [58] as
reference. Since it is deterministic, the diversity score is
zero.
SRFlow As the baseline with diverse super-resolution
output, we use the Flow-based method SRFlow [41]. It
conditions the image generation method [30] for super-
resolution. Different from the ESRGAN, the generated
super-resolution images are highly consistent with the in-
put low-resolution image.

4.2. Architectures and Main Ideas

Here we discuss the main ideas of this and last year’s
submitted methods. The underlying technologies and the
use of external data are indicated in Table 1.
Flow-Based The winning team “Deepest (21)” based their
approach on SRFlow [41] and submitted a modified ver-
sion this year. Their strategy is to train a Normalizing
Flow model to transform a high-resolution image condi-
tioned on a low-resolution image into a latent variable. The
training objective is to minimize the negative log-likelihood
of this latent variable belonging to the gaussian distribu-
tion. For inference, they use the property of Normalizing
Flows [12] that they are invertible. They sample a latent
vector of Gaussian noise and transform it, conditioned on
the low-resolution image to a high-resolution image. Since
the method is bijective, it cannot map two different latent

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

IMAG ZW 0.171 48.14 21.938(3) 3.57(2) 2.5
Deepest 0.126 50.13 28.853(1) 3.67(3) 2.5
IMAG WZ 0.169 45.20 27.320(2) 3.34(1) 1.5

FutureReference (IMLE) 0.165 37.51 19.636 - -
SR DL (VAE) 0.234 39.80 20.508 - -
SSS (GAN) 0.110 44.70 13.285 - -
Deepest (Flow) 0.117 50.54 26.041 - -

SRFlow 0.122 49.86 25.008 3.62 -
ESRGAN 0.124 38.74 0.000 3.52 -
GT 0 1 - 3.15 -

Table 2. Quantitative comparison of participating teams. (4⇥)

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

Deepest 0.257 50.37 26.539 4.510 -

FutureReference (IMLR) 0.291 36.51 17.985 4.741 -
SSS (GAN) 0.237 37.43 13.548 4.850 -
SR DL (VAE-GAN) 0.311 42.28 14.817 4.797 -
Deepest (Flow) 0.259 48.64 26.941 4.503 -

SRFlow 0.282 47.72 25.582 4.775 -
ESRGAN 0.284 30.65 0 4.452 -
GT 0 1 - 3.173 -

Table 3. Quantitative comparison of participating teams. (8⇥)



Team IMAG_WZ
Diffusion Models for Learning the Super 
Resolution Space

21

• Condition Denoising Diffusion 
Probabilistic Model (DDPM) [1]

• Inference:
• Sample from pure noise
• Denoise conditioned on low-resolution
• Generate SR in T steps

[1] Denoising diffusion probabilistic models
Ho, J., Jain, A. and Abbeel, P. NeurIPS 2020
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Figure 7. Algorithm overview. Our method proposes a frequency
separation on the target image and applies noise on high-frequency
input with noise-conditioned coupling layers for diverse super-
resolution outputs.

as the low-pass filter with a specific scale factor s and the
high-frequency input xhf is calculated by subtracting low-
frequency elements from the high-resolution target x,

xhf = x� ((x)s#)s", (2)

where (·)s# and (·)s" indicate bicubic downsampling and
upsampling with the scale factor s respectively.

They leverage a normalizing flow based super-resolution
model, SRFlow [41], as a baseline for high-quality diverse
outputs compared to GAN which produces deterministic
single outputs. The structure of our model basically fol-
lows SRFlow which consists of a squeeze module, tran-
sition step, conditional flow step, and split module. The
main difference is that the input of the forward process in
the normalizing flow is not the high-resolution image x as
suggested in SRFlow, but the filtered high-frequency infor-
mation xhf of the high-resolution image.

xhf = fn � fn�1 � · · · � f1(z) (3)

where z and f(·) indicate Gaussian latent variable and flow
model which consists of invertible transformation.

The motivation of the flow-based architecture is to map
the simple distribution pz to the complex image distribution
px with multi-layer invertible transformation. However, the
mismatch of the manifold input and output data distribution
induces poor generation performance, and SoftFlow [27] al-
leviate such mismatch by estimating a conditional perturbed
data distribution rather than estimating direct input distribu-
tion.

NCSR [29] applies noise-conditioned affine coupling
suggested in SoftFlow to the SRFlow architecture for di-
verse outputs without noisy artifacts. The transition step of
our proposed method consists of 5 components: ActNorm,
1⇥1 convolution, affine injector, and two conditional affine
coupling (noise affine coupling and low-resolution affine
coupling), which are the same as NCSR. Gaussian noise
is added to the input during the forward process in training,

Figure 8. The forward diffusion process q(left to right) gradually
adds noise to the target image. The reverse inference process p
(right to left) The reverse process p is to restore the image under
the conditions of the source image x by iterative method. Source
image x is not shown here.

and our method applies noise on the high-frequency input
xhf .

v ⇠ N (0,⌃)

x+
hf = xhf + v

y+ = y + w

z = f�1(x+
hf |y

+, v)

(4)

where w indicates noise resized to the same size as the low-
resolution input y.

They formulate the loss function only with negative log-
likelihood Lnll similar to [41, 29],

Lnll = � log px|y,v(x|y, v, ✓)

= � log pz(f✓(x; y, v))� log | det @f✓
@y

(x; y, v)|.
(5)

5.2. IMAG WZ: Diffusion Models for Learning

the Super Resolution Space and IMAG ZW:

Learning the Super-Resolution Space Using

Diffusion Gamma Models

This team uses Conditional DDPMs, which generates a
target image by T-step refinement. The model starts with a
pure noise image, iteratively refines the corresponding im-
age over T successful iterations according to the learned
conditional transformation distribution. (see Figure 8)

The distribution of intermediate images in the inference
chain is determined in the forward process that gradually
adding noise to the signal through the Markov chain. The
goal of our model is to reverse the diffusion process by itera-
tively recovering its target image from noise given an image
through a reverse Markov chain.

As a result, they learn the reverse chain by using a neural
denoising model which can estimate the noise.

5.2.1 IMAG ZW: Learning the Super-Resolution

Space Using Diffusion Gamma Models

This team submitted a variation of the approach from
IMAG WZ differing in the noise generation process. In the
previous work on diffusion models, most of the methods



Team IMAG_ZW
Learning the Super-Resolution Space Using Diffusion 
Gamma Models

22

• Condition Denoising Diffusion 
Probabilistic Model (DDPM) [1]

• Inference:
• Sample from pure noise
• Denoise conditioned on low-resolution
• Generate SR in T steps

• Use Gamma Distribution for noise

[1] Denoising diffusion probabilistic models
Ho, J., Jain, A. and Abbeel, P. NeurIPS 2020
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Figure 7. Algorithm overview. Our method proposes a frequency
separation on the target image and applies noise on high-frequency
input with noise-conditioned coupling layers for diverse super-
resolution outputs.

as the low-pass filter with a specific scale factor s and the
high-frequency input xhf is calculated by subtracting low-
frequency elements from the high-resolution target x,

xhf = x� ((x)s#)s", (2)

where (·)s# and (·)s" indicate bicubic downsampling and
upsampling with the scale factor s respectively.

They leverage a normalizing flow based super-resolution
model, SRFlow [41], as a baseline for high-quality diverse
outputs compared to GAN which produces deterministic
single outputs. The structure of our model basically fol-
lows SRFlow which consists of a squeeze module, tran-
sition step, conditional flow step, and split module. The
main difference is that the input of the forward process in
the normalizing flow is not the high-resolution image x as
suggested in SRFlow, but the filtered high-frequency infor-
mation xhf of the high-resolution image.

xhf = fn � fn�1 � · · · � f1(z) (3)

where z and f(·) indicate Gaussian latent variable and flow
model which consists of invertible transformation.

The motivation of the flow-based architecture is to map
the simple distribution pz to the complex image distribution
px with multi-layer invertible transformation. However, the
mismatch of the manifold input and output data distribution
induces poor generation performance, and SoftFlow [27] al-
leviate such mismatch by estimating a conditional perturbed
data distribution rather than estimating direct input distribu-
tion.

NCSR [29] applies noise-conditioned affine coupling
suggested in SoftFlow to the SRFlow architecture for di-
verse outputs without noisy artifacts. The transition step of
our proposed method consists of 5 components: ActNorm,
1⇥1 convolution, affine injector, and two conditional affine
coupling (noise affine coupling and low-resolution affine
coupling), which are the same as NCSR. Gaussian noise
is added to the input during the forward process in training,

Figure 8. The forward diffusion process q(left to right) gradually
adds noise to the target image. The reverse inference process p
(right to left) The reverse process p is to restore the image under
the conditions of the source image x by iterative method. Source
image x is not shown here.

and our method applies noise on the high-frequency input
xhf .

v ⇠ N (0,⌃)

x+
hf = xhf + v

y+ = y + w

z = f�1(x+
hf |y

+, v)

(4)

where w indicates noise resized to the same size as the low-
resolution input y.

They formulate the loss function only with negative log-
likelihood Lnll similar to [41, 29],

Lnll = � log px|y,v(x|y, v, ✓)

= � log pz(f✓(x; y, v))� log | det @f✓
@y

(x; y, v)|.
(5)

5.2. IMAG WZ: Diffusion Models for Learning

the Super Resolution Space and IMAG ZW:

Learning the Super-Resolution Space Using

Diffusion Gamma Models

This team uses Conditional DDPMs, which generates a
target image by T-step refinement. The model starts with a
pure noise image, iteratively refines the corresponding im-
age over T successful iterations according to the learned
conditional transformation distribution. (see Figure 8)

The distribution of intermediate images in the inference
chain is determined in the forward process that gradually
adding noise to the signal through the Markov chain. The
goal of our model is to reverse the diffusion process by itera-
tively recovering its target image from noise given an image
through a reverse Markov chain.

As a result, they learn the reverse chain by using a neural
denoising model which can estimate the noise.

5.2.1 IMAG ZW: Learning the Super-Resolution

Space Using Diffusion Gamma Models

This team submitted a variation of the approach from
IMAG WZ differing in the noise generation process. In the
previous work on diffusion models, most of the methods
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• Based on SRFlow [2]
• Noise-Conditioned affine coupling
• Frequency Separation
• Add noise on the sparce high-

frequency image for more diversity

[2] SRFlow: Learning the Super-Resolution Space with Normalizing Flow.
A. Lugmayr, M. Danelljan, L. Van Gool, R. Timofte. ECCV 2020.
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Figure 1. Algorithm overview. Our method proposes a frequency separation on the target image and applies noise on high-frequency input
with noise-conditioned coupling layers for diverse super-resolution outputs.

convolution, affine injector, and two conditional affine cou-
pling (noise affine coupling and low-resolution affine cou-
pling), which are the same as NCSR. Gaussian noise is
added to the input during the forward process in training,
and our method applies noise on the high-frequency input
xhf .

v ⇠ N (0,⌃)

x+
hf = xhf + v

y+ = y + w

z = f�1(x+
hf |y

+, v)

(3)

where w indicates noise resized to the same size as the low-
resolution input y.

We formulate the loss function only with negative log-
likelihood Lnll similar to [5, 4],

Lnll = � log px|y,v(x|y, v, ✓)

= � log pz(f✓(x; y, v))� log | det @f✓
@y

(x; y, v)|.
(4)
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