Residual Local Feature Network for Efficient Super-Resolution

Fangyuan Kong*, Mingxi Li*, Songwei Liu*, Ding Liu, Jingwen He, Yang Bai, Fangmin Chen, Lean Fu

ByteDance Inc

ByteDance字节跳动

Motivation: What is Efficient

Trade-off: model complexity vs restoration quality

Runtime

Parameters **FLOPs** Activations

Motivation: What is Efficient

Runtime

Focus of Our Work: Runtime Optimization

- Residual local feature block
- •Novel feature extractor of contrastive loss
- •Warm-start training strategy

Parameters **FLOPs** Activations

RLFN: 1st place winner in the main track of NTIRE 2022 efficient super-resolution challenge.

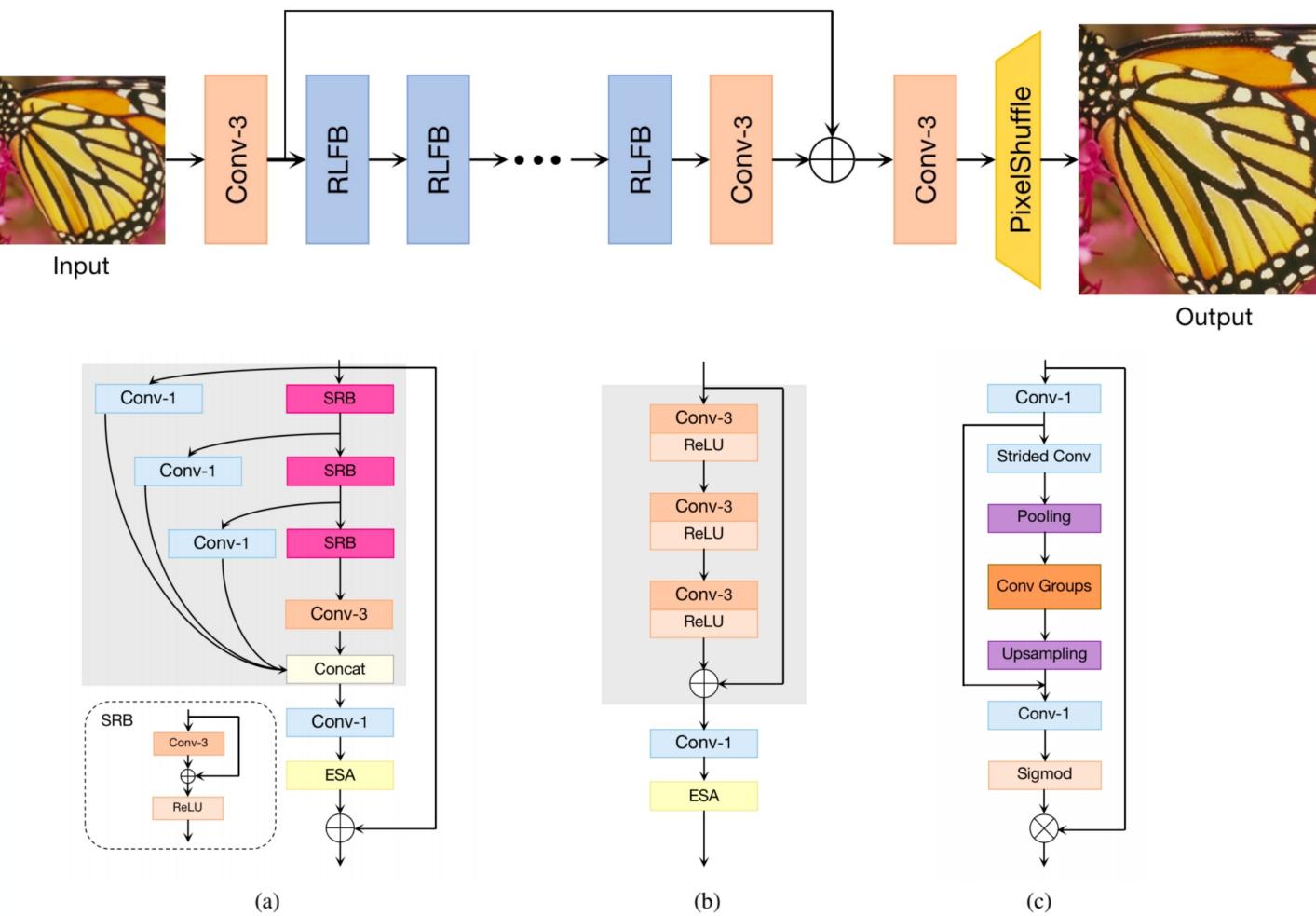
to speed	up	runtime
----------	----	---------

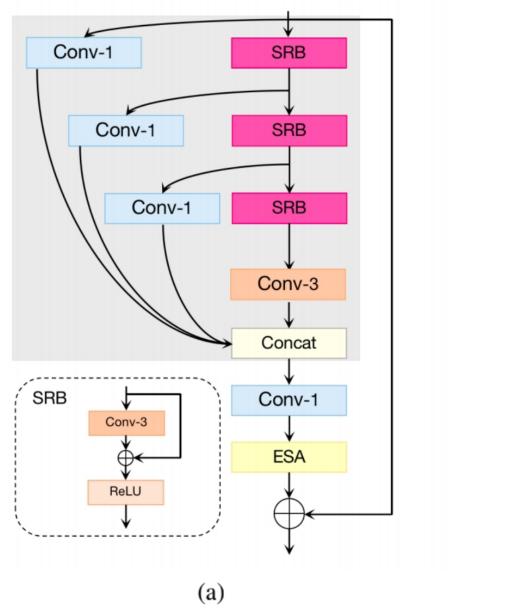
he SR performance	o boost the	to
he SR performance	o boost the	to

Network Architecture

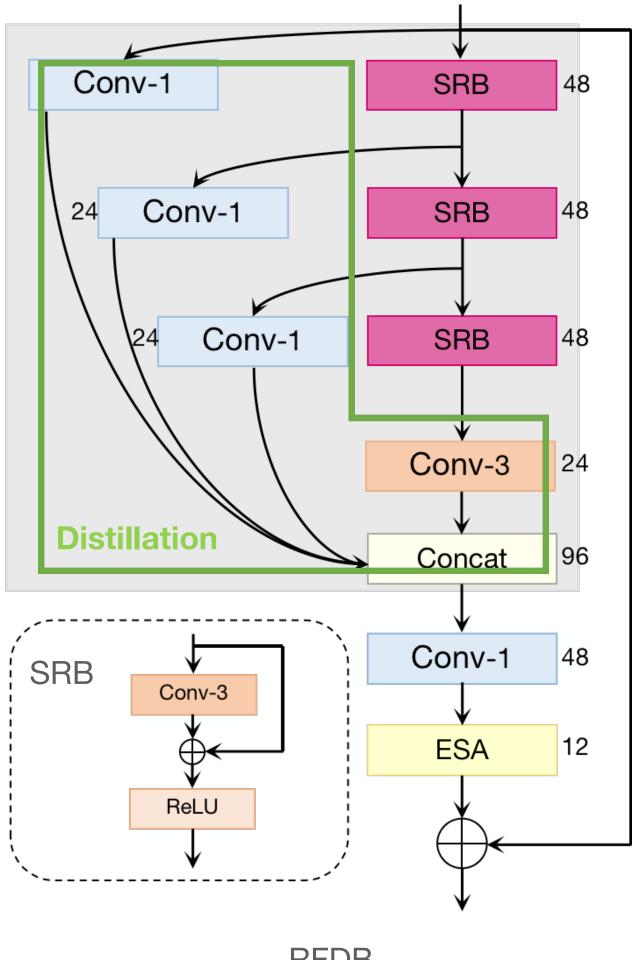
山 ByteDance字节跳动

Network Architecture

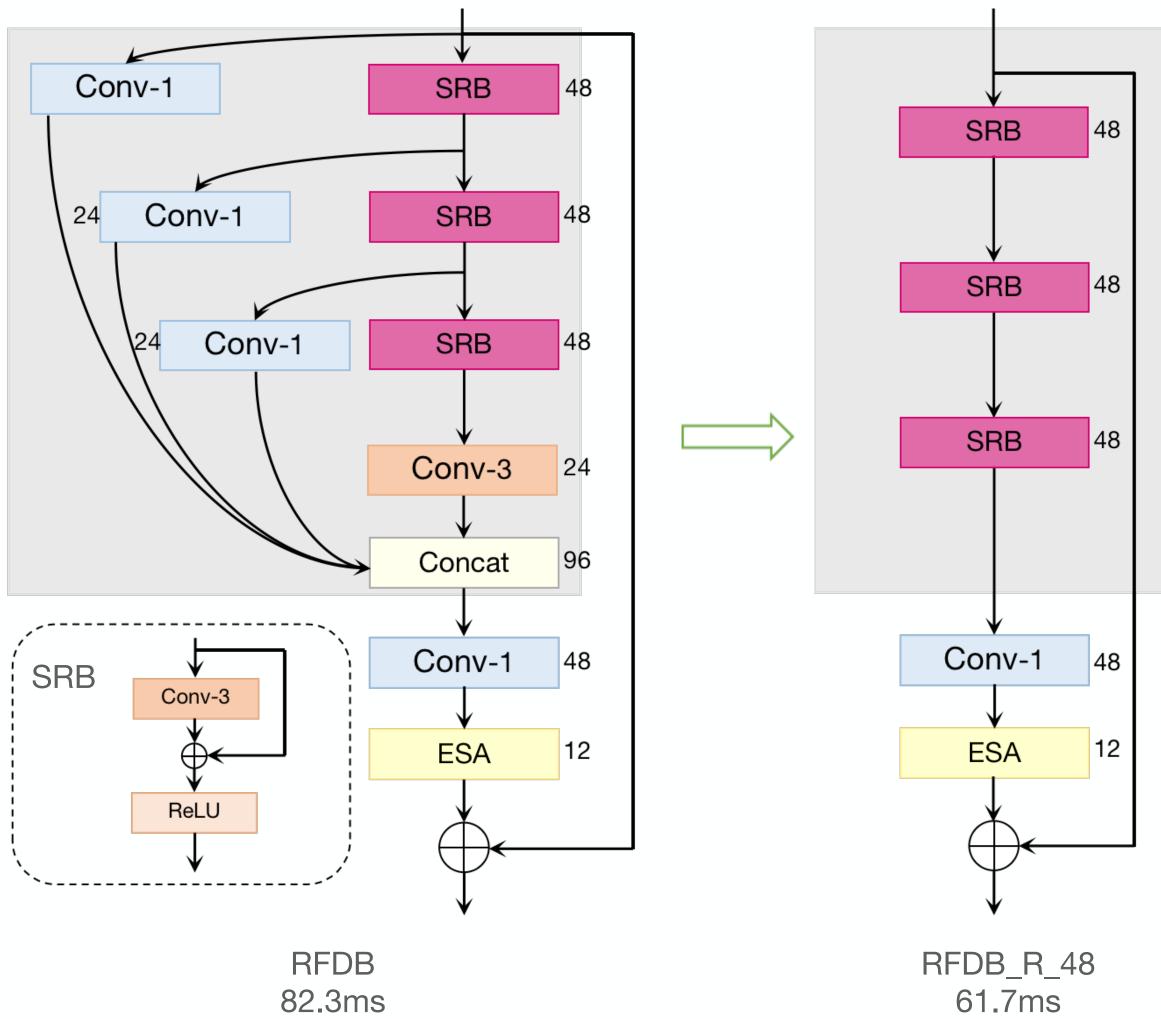


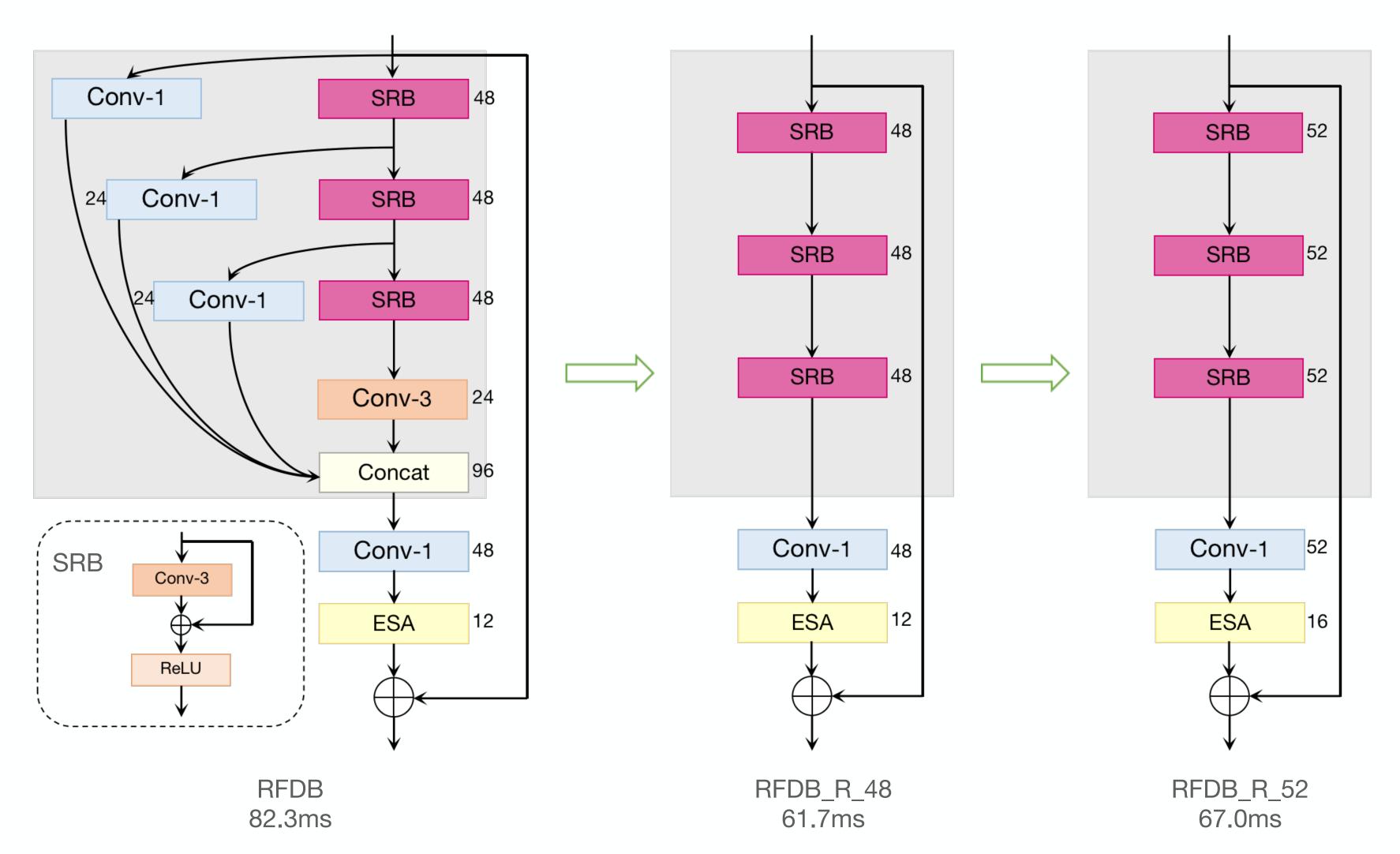


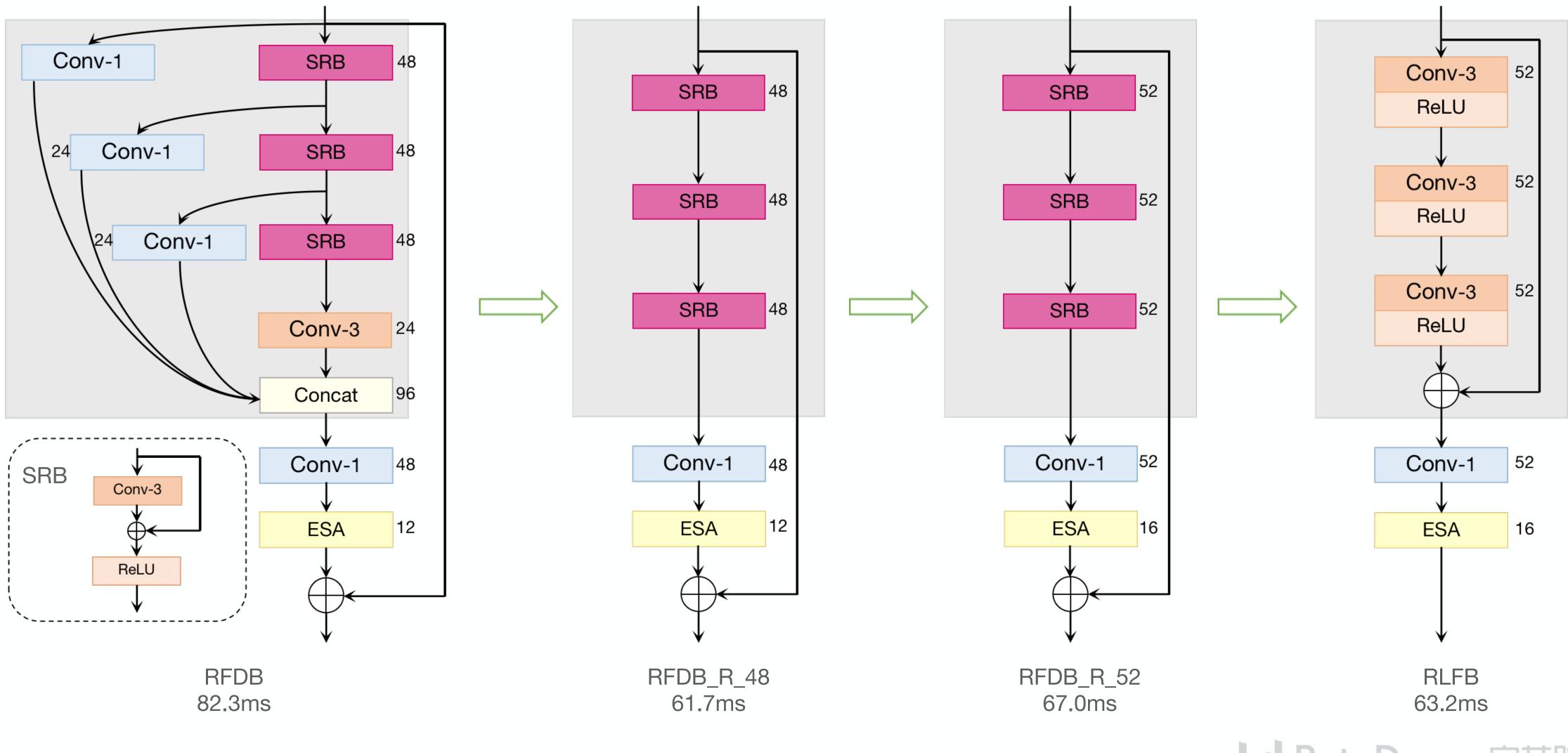
(a) RFDB: residual feature distillation block. (b) RLFB: residual local feature block. (c) ESA: Enhanced Spatial Attention.

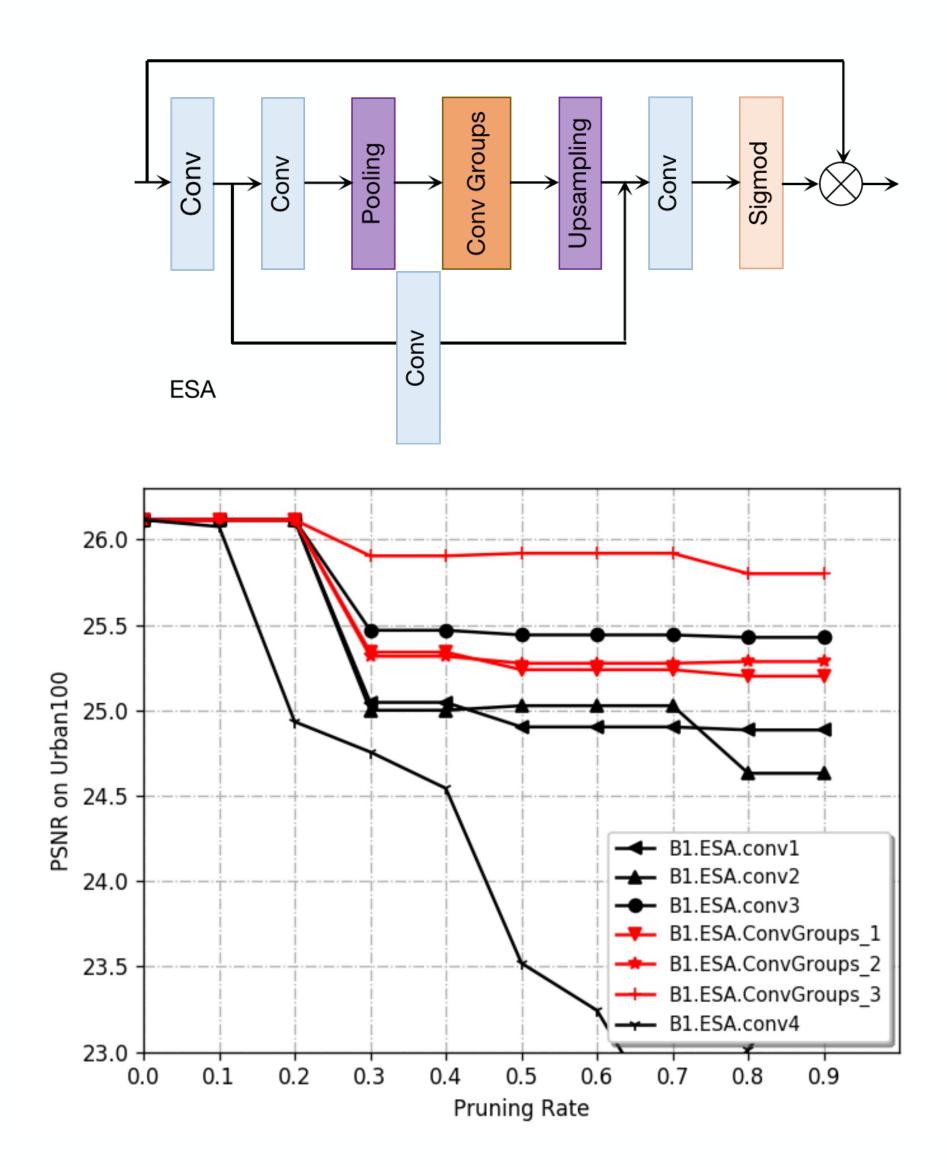


RFDB 82.3ms









There are three Conv layer in the Conv Groups of ESA

Pruning sensitivity analysis shows high redundancy in Conv Groups, so we set only one Conv layer in Conv Groups

Revisiting the Contrastive Loss

The basic idea of contrastive loss is to push positives closer to anchors, and push negatives away from anchors in the latent space

 $CL = \sum_{i=1}^{n} \lambda_i \frac{d(\phi_i(Y_{anchor}), \phi_i(Y_{pos}))}{d(\phi_i(Y_{anchor}), \phi_i(Y_{neg}))}$

anchor=output of network, pos=HR, neg=bicubic LR

Feature Extractor of Contrastive Loss

Our feature extractor:

- Structure: Conv_k3s1 + Tanh + Conv_k3s1
- Replace Relu with Tanh

Warm-Start Training Strategy

Warm-Start Strategy

- In the first stage, the model is trained from scratch.
- Train a model in multiple stages to get better results.

Model	Set5 PSNR / SSIM	Set14 PSNR / SSIM	BSD100 PSNR / SSIM	Urban100 PSNR / SSIM	
RLFN-S_e2000	32.17 / 0.8953	28.58 / 0.7815	27.57 / 0.7354	26.08 / 0.7849	
RFLN-S_clr	32.20 / 0.8959	28.59 / 0.7818	27.56 / 0.7359	26.12 / 0.7865	
RLFN-S_ws_1	32.21 / 0.8959	28.60 / 0.7818	27.57 / 0.7360	26.12 / 0.7864	

Table 5. Effect of learning rate strategy for 4x SR. RLFN-S_e2000 and RLFN-S_clr set the total epochs to 2000 to be compared with our proposed strategy RLFN-S_ws_1. RLFN-S_e2000 halves the learning rate every 4×10^5 iterations. RLFN-S_clr applies a cyclical learning rate policy. The best and second-best results are marked in red and blue colors, respectively.

• In the next stage, load the weights from previous stage and train model with the same settings.

RLFN for NTIRE 2022 efficient super-resolution challenge

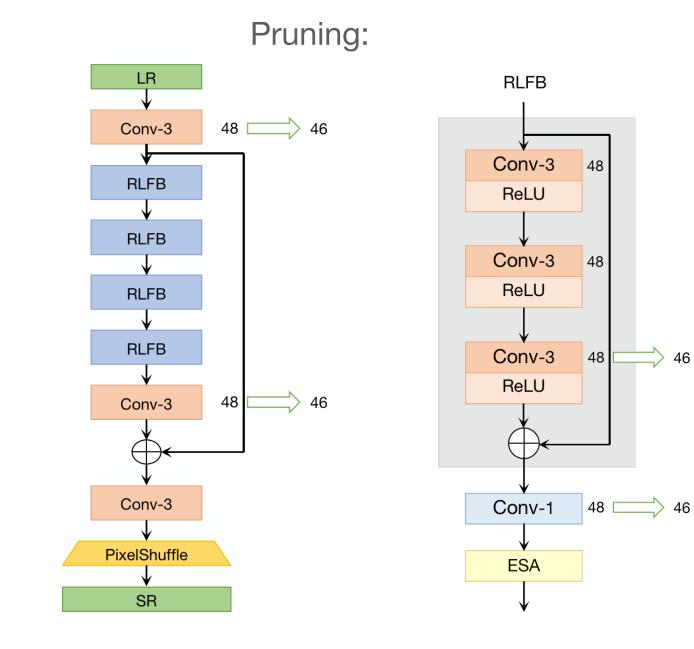
RLFN for NTIRE 2022 Challenge

Architecture: 4 RLFBs with 48 channels training steps:

- train model from scratch with L1 loss
- employ warm-start policy and train model twice
- change loss to L1 loss + 255*Contrastive loss
- prune the model with L1 loss
- finetune with MSE loss

1st place winner in the main track (runtime track)

Team	Main Track	Sub- Track 1	Sub- Track 2	PSNR [Val.]	PSNR [Test]	Ave. Time [ms]	#Params [M]	FLOPs [G]	#Acts [M]	GPU Mem. [M]	#Conv
ByteESR	1	$22_{(11)}$	$33_{(2)}$	29.00	28.72	$27.11_{(1)}$	$0.317_{(11)}$	$19.70_{(11)}$	$80.05_{(6)}$	377.91(4)	39
NJU_Jet	2	37(18)	$44_{(6)}$	29.00	28.69	28.07(2)	0.341(18)	22.28(19)	$72.09_{(4)}$	$204.60_{(1)}$	34
NEESR	3	$10_{(4)}$	$27_{(1)}$	29.01	28.71	29.97(3)	$0.272_{(4)}$	$16.86_{(6)}$	79.59 ₍₅₎	575.99(9)	59
Super	4	$26_{(12)}$	$55_{(10)}$	29.00	28.71	32.09(4)	$0.326_{(14)}$	$20.06_{(12)}$	93.82(10)	663.07(15)	59
MegSR	5	18(9)	$43_{(5)}$	29.00	28.68	32.59 ₍₅₎	$0.290_{(9)}$	$17.70_{(9)}$	91.72 ₍₈₎	640.63(12)	64
RFDN AIM2020 Winner IMDN_baseline				29.04 29.13	28.75 28.78	41.97 50.86	0.433 0.894	27.10 58.53	112.03 154.14	788.13 471.76	64 43



> 46

Scan to get our code and model!

h ByteDance字节跳动

THANKS

ByteDance字节跳动

Scan to get our code and model!

