### MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction

Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB

Yuanhao Cai<sup>1,\*</sup>, Jing Lin<sup>1,\*</sup>, Zudi Lin<sup>2</sup>, Haoqian Wang<sup>1</sup> Hanspeter Pfister<sup>2</sup>, Yulun Zhang<sup>3</sup>, Radu Timofte<sup>3,4</sup>, Luc Van Gool<sup>3</sup>

Shenzhen International Graduate School, Tsinghua University<sup>1</sup> Harvard University<sup>2</sup> ETH Zürich<sup>3</sup> JMU Würzburg<sup>4</sup>

### Overview

• Introduction

• Method

• Experiments

# Introduction

### Introduction

Application





Medical Imaging

Object Tracking





Coded Aperture Snapshot Spectral Imaging (CASSI) System



#### Model-based Methods

- Time consuming
- Poor representing capacity
- Unsatisfactory performance

**CNN-based Methods** 

 Show limitations in capturing long-range dependencies

# Method



Network Architecture

- Cascaded by  $N_s$  SSTs
- Each SST adopts a threelevel U-shaped structure

Spectral-wise MSA

- Based on HSI characteristic
- Treats each spectral feature map as  $\mathbf{A}_j = \operatorname{softmax}(\sigma_j \mathbf{K}_j^{\mathrm{T}} \mathbf{Q}_j), \ head_j = \mathbf{V}_j \mathbf{A}_j$ a token to calculate self-attention  $\operatorname{S-MSA}(\mathbf{X}) = \left(\operatorname{Concat}_{j=1}^{N}(head_j)\right)\mathbf{W} + f_p(\mathbf{V})$

 $\mathbf{Q} = \mathbf{X}\mathbf{W}^{\mathbf{Q}}, \mathbf{K} = \mathbf{X}\mathbf{W}^{\mathbf{K}}, \mathbf{V} = \mathbf{X}\mathbf{W}^{\mathbf{V}}$ 



We compare computational complexity of S-MSA, global MSA, and window-based MSA as

$$O(G - MSA) = 2(HW)^2C, \qquad O(W - MSA) = \frac{HW}{M^2}(2(M^2)^2C) = 2M^2HWC$$
$$O(S - MSA) = N((C/N)^2HW + (C/N)^2HW)^2 = \frac{2HWC^2}{N}$$

Only our S-MSA can enjoy linear computational complexity and global receptive fields jointly.

.

| NTIRE 2022 HSI Dataset - Valid |            |           |        |        |       |             | NTIRE 2022 HSI Dataset - Test |        |  |  |  |
|--------------------------------|------------|-----------|--------|--------|-------|-------------|-------------------------------|--------|--|--|--|
| Method                         | Params (M) | FLOPS (G) | MRAE   | RMSE   | PSNR  | Username    | MRAE                          | RMSE   |  |  |  |
| HSCNN+ [67]                    | 4.65       | 304.45    | 0.3814 | 0.0588 | 26.36 | pipixia     | 0.2434                        | 0.0411 |  |  |  |
| HRNet [88]                     | 31.70      | 163.81    | 0.3476 | 0.0550 | 26.89 | uslab       | 0.2377                        | 0.0391 |  |  |  |
| EDSR [45]                      | 2.42       | 158.32    | 0.3277 | 0.0437 | 28.29 | orange_dog  | 0.2377                        | 0.0376 |  |  |  |
| AWAN [36]                      | 4.04       | 270.61    | 0.2500 | 0.0367 | 31.22 | askldklasfj | 0.2345                        | 0.0361 |  |  |  |
| HDNet [29]                     | 2.66       | 173.81    | 0.2048 | 0.0317 | 32.13 | HSHAJii     | 0.2308                        | 0.0364 |  |  |  |
| HINet [21]                     | 5.21       | 31.04     | 0.2032 | 0.0303 | 32.51 | ptdoge_hot  | 0.2107                        | 0.0365 |  |  |  |
| MIRNet [84]                    | 3.75       | 42.95     | 0.1890 | 0.0274 | 33.29 | test_pseudo | 0.2036                        | 0.0324 |  |  |  |
| Restormer [83]                 | 15.11      | 93.77     | 0.1833 | 0.0274 | 33.40 | gkdgkd      | 0.1935                        | 0.0322 |  |  |  |
| MPRNet [85]                    | 3.62       | 101.59    | 0.1817 | 0.0270 | 33.50 | deeppf      | 0.1767                        | 0.0322 |  |  |  |
| MST-L [13]                     | 2.45       | 32.07     | 0.1772 | 0.0256 | 33.90 | mialgo_ls   | 0.1247                        | 0.0257 |  |  |  |
| MST++                          | 1.62       | 23.05     | 0.1645 | 0.0248 | 34.32 | MST++*      | 0.1131                        | 0.0231 |  |  |  |

Our MST++ significantly outperforms SOTA CNN-based methods with cheaper memory and computational costs

We plot PSNR-Params-FLOPS comparisons, where MST++ takes up the upper-left corner



| RGB Image RGB Patch                                                                                                                                                  |        |             |      |       |       |        |           |        |           |       |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------|-------|-------|--------|-----------|--------|-----------|-------|----|
| → Ground Truth<br>→ EDSR, corr: 0.9980<br>→ HDNet, corr: 0.9981<br>→ HINet, corr: 0.9925<br>→ HRNet, corr: 0.9979                                                    |        |             |      |       |       |        |           |        |           |       |    |
| 0.2<br>HSCNN+, corr: 0.9975<br>                                                                                                                                      |        |             |      |       |       |        |           |        |           |       |    |
|                                                                                                                                                                      |        |             |      |       |       |        |           |        |           |       |    |
| RGB Image RGB Patch                                                                                                                                                  |        | innilli F   |      |       |       |        |           |        | IIIIIII F |       |    |
| → Ground Truth<br>→ EDSR, corr: 0.9980<br>→ HDNet, corr: 0.9981<br>→ HINet, corr: 0.9979                                                                             |        | inininini f |      |       |       |        |           |        |           |       |    |
| HSCNN+, corr: 0.9975<br>MIRNet, corr: 0.9977<br>MPRNet, corr: 0.9979<br>Restormer, corr: 0.9983<br>MST-L, corr: 0.9983<br>MST-L, corr: 0.9993<br>MST++, corr: 0.9993 |        |             |      |       |       |        |           |        |           |       |    |
| Wavelength (nm)                                                                                                                                                      | HSCNN+ | HRNet       | EDSR | HDNet | HINet | MIRNet | Restormer | MPRNet | MST-L     | MST++ | GT |

| Method     | Baseline | SW-MSA | W-MSA  | G-MSA  | S-MSA  | $N_s$      | 1      | 2      |       | 3  |
|------------|----------|--------|--------|--------|--------|------------|--------|--------|-------|----|
| MRAE       | 0.3177   | 0.2839 | 0.2624 | 0.1821 | 0.1645 | MRAE       | 0.1761 | 0.1716 | 0.16  | 45 |
| RMSE       | 0.0453   | 0.0399 | 0.0375 | 0.0271 | 0.0248 | RMSE       | 0.0266 | 0.0269 | 0.024 | 8  |
| Params (M) | 1.30     | 1.60   | 1.60   | 1.60   | 1.62   | Params (M) | 0.55   | 1.08   | 1.62  |    |
| FLOPS (G)  | 17.68    | 24.10  | 24.10  | 25.11  | 23.05  | FLOPS (G)  | 8.10   | 15.57  | 23.05 |    |

(a) Ablation study of different self-attention mechanisms.

(b) Ablation study of stage number  $N_s$ .

Ablation study of different MSA modules Our S-MSA achieves the most significant improvement while requiring cheapest memory and computational costs

Ablation study of stage number  $N_s$ The performance is improved as the stage number increases

Please note that MST++ is based on our previous work "Mask-guided Spectral-wise Transformer for Effcient Hyperspectral Image Reconstruction" that has been accepted by CVPR 2022 main conference

# Thanks for Watching



MST : <u>https://github.com/caiyuanhao1998/MST</u>

MST++ : <u>https://github.com/caiyuanhao1998/MST-plus-plus</u>