

One-Sentence Summary:

We propose the Self-Calibrated Efficient Transformer Network (SCET), which effectively combines the efficient pixel attention mechanism with the transformer to achieves excellent results with few parameters.

Motivations:

- Most of CNN-based SR networks have a large number of parameters, resulting in the limitation of the application of SR technology in edge devices.
- > Most of lightweight SR methods focus on local contextual information and do not consider global \succ We introduce the efficient transformer design to the lightweight SISR task, similar textures, leading to problems such as artifacts effectively exploiting to the property that the transformer module can capture longin the recovered image. range dependencies, avoiding the problem of wrong textures generated by current lightweight SR methods.
- \succ The limited receptive field of convolution operation is We design the SC module as the high-performance extractor. Compared with the difficult to capture globally similar features, resulting in information distillation mechanism in the IMDB block, the SC module employs a a poor trade-off between performance and complexity. more efficient feature propagation strategy, achieving better performance with How to design a **lightweight** transformer to **effectively** fewer parameters and less computational effort.

perform single image super-resolution?

Self-Calibrated Efficient Transformer for Lightweight Super-Resolution

Wenbin Zou^{1,*}, Tian Ye^{2,*}, Weixin Zheng^{3,*}, Yunchen Zhang⁴, Liang Chen^{1,†}, Yi Wu¹ Fujian Normal University¹, Jimei University², Fuzhou University³, China Design Group⁴

Self-Calibrated Efficient Transformer Network (SCET)

(a). Self-Calibrated convolutions with Pixel Attention (SCPA)

(b). Multi-Dconv Head Transposed Attention (MDTA)

(c). Gated-Dconv feed-forward network (GDFN)

Quantitative Results:

Method	Scale	Params	Set5	Set14	B100	Urban100	Manga109
			PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
Bicubic	×2	-	33.66/0.9299	30.24/0.8688	29.56/0.8431	26.88/0.8403	30.80/0.9339
SRCNN [11]		8K	36.66/0.9542	32.45/0.9067	31.36/0.8879	29.50/0.8946	35.60/0.9663
VDSR [20]		666K	37.53/0.9587	33.03/0.9124	31.90/0.8960	30.76/0.9140	37.22/0.9750
DRRN [34]		298K	37.74/0.9591	33.23/0.9136	32.05/0.8973	31.23/0.9188	37.88/0.9749
DRCN [21]		1,774K	37.63/0.9588	33.04/0.9118	31.85/0.8942	30.75/0.9133	37.55/0.9732
IDN [19]		553K	37.83/0.9600	33.30/0.9148	32.08/0.8985	31.27/0.9196	38.01/0.9749
CARN [2]		1,592K	37.76/0.9590	33.52/0.9166	32.09/0.8978	31.92/0.9256	38.36/0.9765
IMDN [18]		694K	38.00/0.9605	33.63/0.9177	32.19/0.8996	32.17/0.9283	38.88/0.9774
PAN [51]		261K	38.00/0.9605	33.59/0.9181	32.18/0.8997	32.01/0.9273	38.70/0.9773
RFDN [28]		534K	38.05/0.9606	33.68/0.9184	32.16/0.8994	32.12/0.9278	38.88/0.9773
$A^{2}F-M$ [42]		999K	38.04/0.9607	33.67/0.9184	32.18/0.8996	32.27/0.9294	38.87/0.9774
SCET (Ours)		683K	38.06/0.9615	33.78/0.9198	32.24/0.9006	32.38/0.9299	39.86/0.9821
							•

Qualitative Results:

 \succ Visual comparison for $\times 4$ SR.

