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Motivations:

➢ Most of CNN-based SR networks have a large number

of parameters, resulting in the limitation of the

application of SR technology in edge devices.

➢ Most of lightweight SR methods focus on local

contextual information and do not consider global

similar textures, leading to problems such as artifacts

in the recovered image.

➢ The limited receptive field of convolution operation is

difficult to capture globally similar features, resulting in

a poor trade-off between performance and complexity.

How to design a lightweight transformer to effectively

perform single image super-resolution?

Self-Calibrated Efficient Transformer Network (SCET) 

➢ We introduce the efficient transformer design to the lightweight SISR task,

effectively exploiting to the property that the transformer module can capture long-

range dependencies, avoiding the problem of wrong textures generated by

current lightweight SR methods.

➢ We design the SC module as the high-performance extractor. Compared with the 

information distillation mechanism in the IMDB block, the SC module employs a 

more efficient feature propagation strategy, achieving better performance with 

fewer parameters and less computational effort. 

Quantitative Results:

Qualitative Results:

➢ Visual comparison for×4 SR.

One-Sentence Summary:
We propose the Self-Calibrated Efficient Transformer
Network (SCET), which effectively combines the efficient
pixel attention mechanism with the transformer to achieves
excellent results with few parameters.

(a). Self-Calibrated convolutions with Pixel Attention (SCPA) (c). Gated-Dconv feed-forward network (GDFN)

(b). Multi-Dconv Head Transposed Attention (MDTA)
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Self-Calibrated Module Efficient Transformer

: Matrix Multiplication

: Concatenation

: Element-wise Addition

: GELU Activation

· : Element-wise Multiplication

3x3DConv : Depth-wise Convolution

Pixel-Shuffle : Pixel-Shuffle Upsample
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