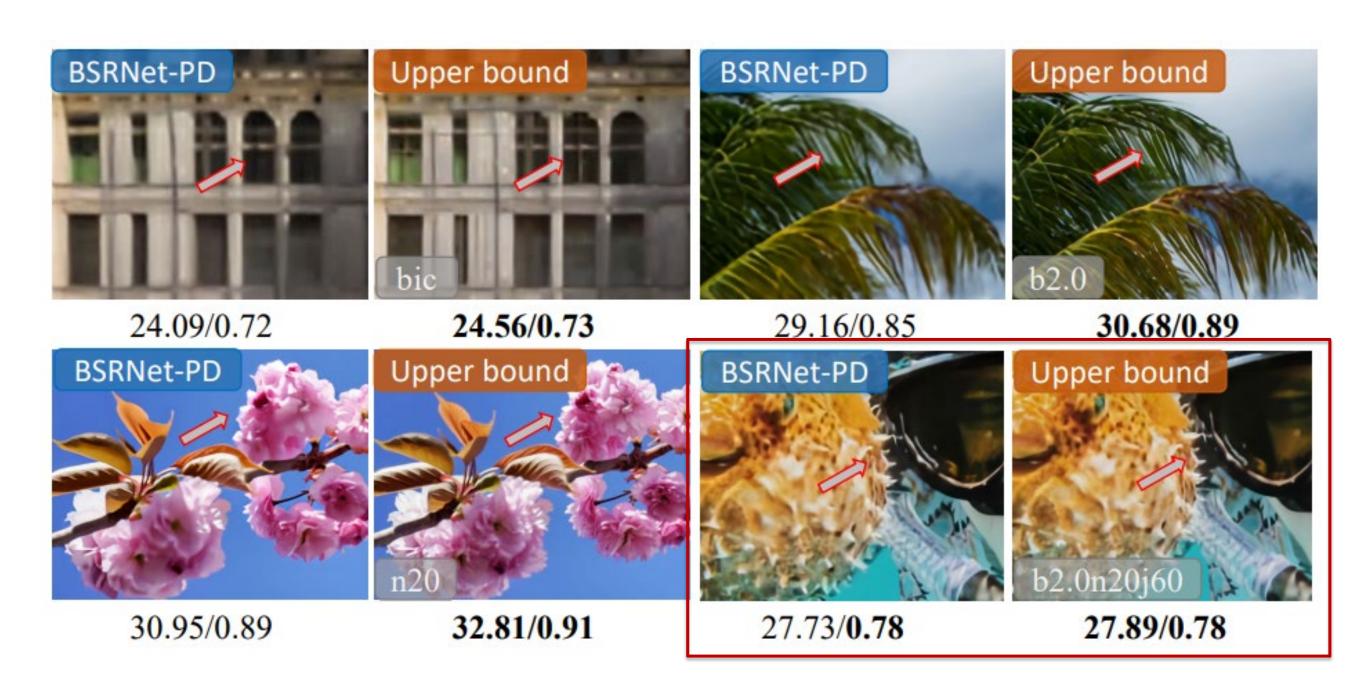


A Closer Look at Blind Super-Resolution: Degradation Models, Baselines, and Performance Upper Bounds

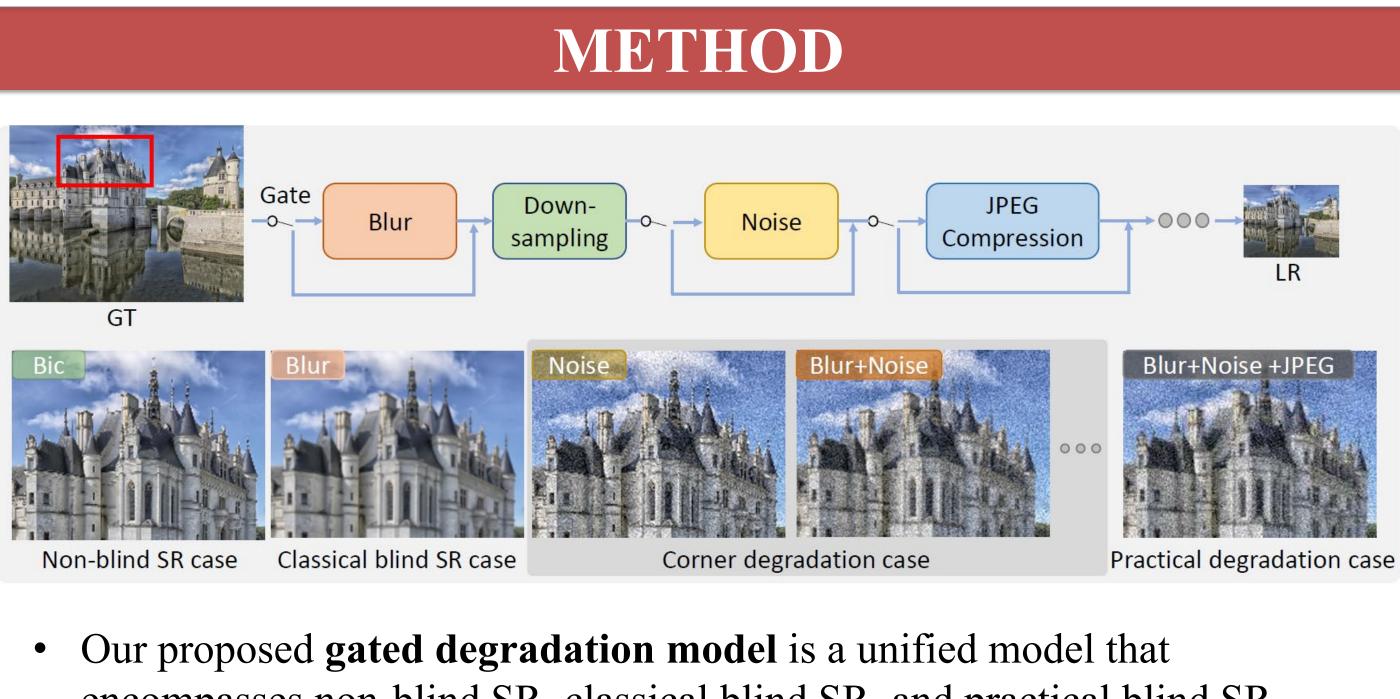

Wenlong Zhang¹, Guangyuan Shi¹, Yihao Liu²³, Chao Dong²⁴, Xiao-Ming Wu^{*1} ¹The HongKong Polytechnic University, ²Shenzhen Institute of Advanced Technology, CAS ³University of Chinese Academy of Sciences, ⁴Shanghai AI Laboratory

MOTIVATION

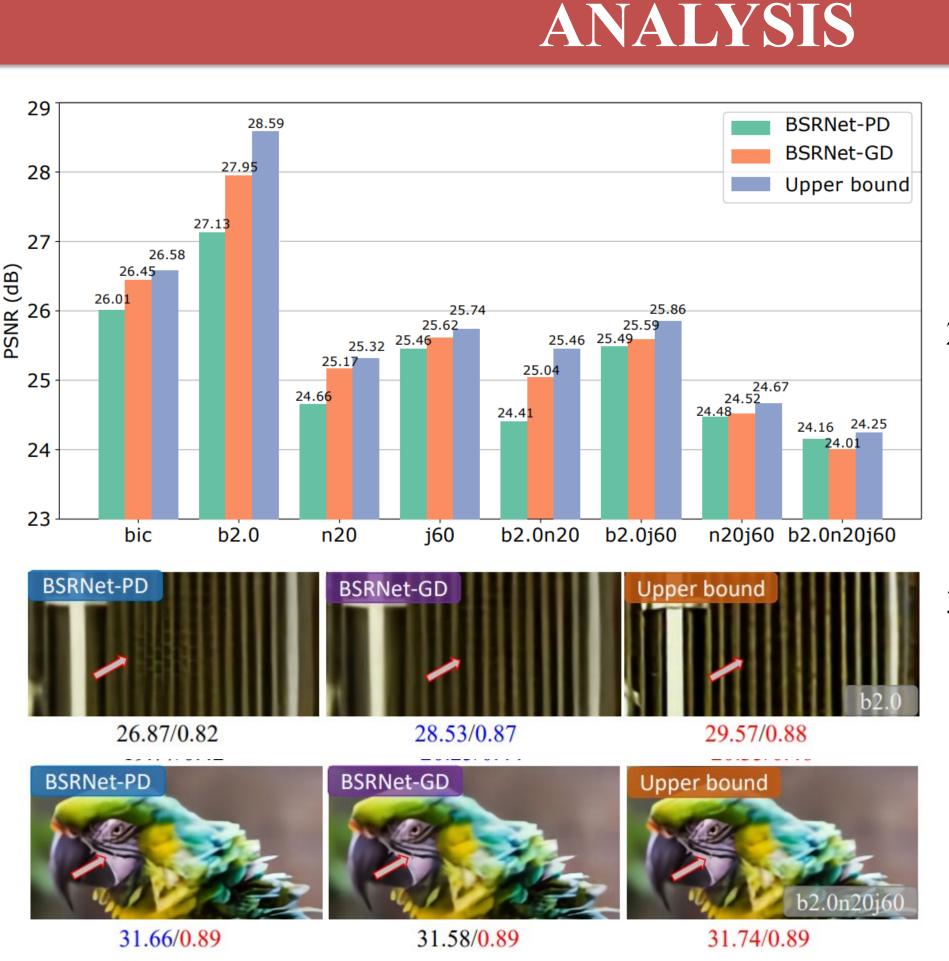
Three key issues not well examined in previous research:

- 1. A general degradation model that can **cover all degradation cases**
- 2. Strong baselines that can well handle most degradation cases

3. The study of **performance upper bounds** that can be used to evaluate the performance of existing blind SR methods w.r.t. distinct degradation cases


The practical degradation (PD) just achieves promising results in complex cases.

CONTRIBUTION


✓ We propose a unified gated degradation model that can effectively handle non-blind, classical, practical degradation cases as well as many other corner cases.

 \checkmark We are the first to provide a comprehensive analysis of blind SR with performance upper bounds on both the classical and practical blind SR paradigms.

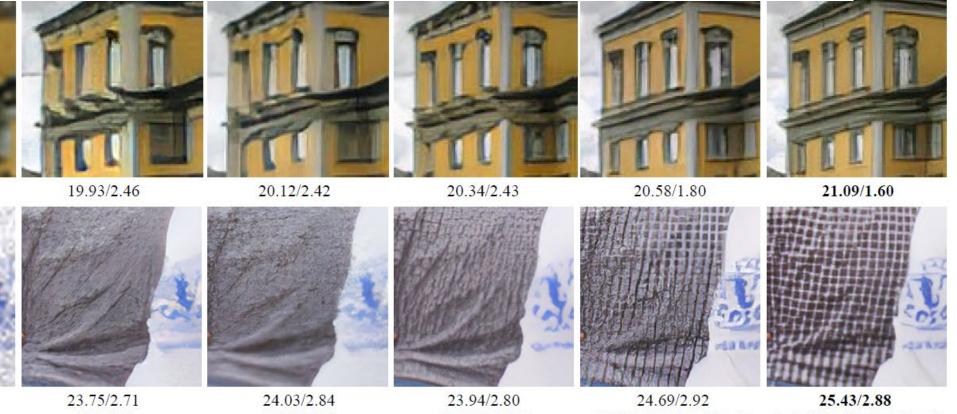
 \checkmark We show that the **baseline** networks with the proposed GD model can achieve **superior performance** close to the upper bounds.

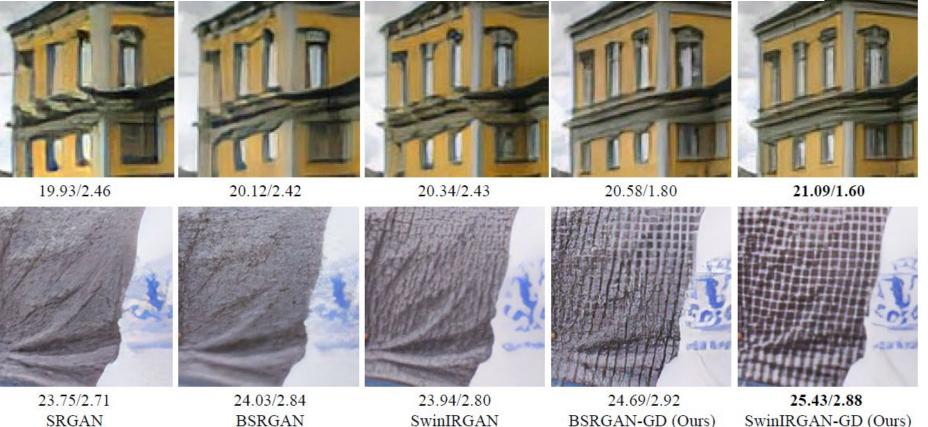
- encompasses non-blind SR, classical blind SR, and practical blind SR.
- The gate controller can generate various corner degradation cases and complex degradation cases to simulate real-world scenarios.

- A blind SR network has a tiny sacrifice in the complex case.
- 2) The performance of corner cases can achieve obvious improvement compared with the PD model.
- 3) A blind SR network can handle all of the degradation types with a small performance drop compared with the upper bound

EXPERIMENTS											
Dataset	Method	Degradation Types									
Dataset	Wiethou	bic	b2.0	n20	j60	b2.0n20	b2.0j60	n20j60	b2.0n20j60	Average	
	Bicubic	24.63	25.40	21.56	24.06	21.90	24.65	21.22	21.72	23.14	
	RCAN [41]	25.65	26.77	24.63	25.16	24.39	25.36	24.36	24.15	25.06	
	SRResNet-FAIG [34]	25.58	26.72	24.53	25.11	24.26	25.29	24.32	24.07	24.99	
BSD100	RRDBNet [29, 38]	25.62	26.76	24.58	25.13	24.33	25.32	24.34	24.11	25.02	
	SwinIR [13]	25.84	_27.05	_ 24.77	25.27	_ 24.48	25.44	24.44	24.18	25.18	
	RRDBNet-GD (ours)	26.25	27.31	25.31	25.23	24.95	25.32	24.38	24.07	25.35	
	SwinIR-GD (ours)	26.61	_27.58	25.64	25.30	25.30	25.39	_24.44	24.14	25.55	
	Upper bound (RRDBNet)	26.36	27.68	25.46	25.30	25.34	25.49	24.45	24.15	25.53	
PSNR (dB)/ /S	PSNR (dB)//SSIM		ANTIO 21.63		ANTIC Maria		NTIQUES 21.75/0.66			TTQUES 22.36/0.70	
PSNR (dB)/S	SIM 23.86/0.45 27.3	7/0.68	27.41	1/0.68	27.41	/0.68	27.55/0.69	27.0	66/0.70	28.04/0.72	

Our method (GD) could generate SOTA quantitative and qualitative results


Method	Metric	Degradation Types								
wiethod	wieure	bic	b2.0	n20	j60	b2.0n20	b2.0j60	n20j60	b2.0n20j60	Average
Bicubic	NIQE	7.08	7.89	8.97	7.35	8.42	7.93	8.99	8.37	8.13
Bicubic	PSNR	21.89	22.54	20.00	21.50	20.36	22.02	19.74	20.20	21.03
SRGAN [12]	NIQE	4.25	5.00	3.49	3.88	3.69	4.59	3.46	3.65	4.00
SKOAN [12]	PSNR	21.75	23.16	21.08	21.55	21.68	22.42	20.95	21.45	21.76
BSRGAN [29, 38]	NIQE	4.51	5.77	4.02	4.25	4.24	5.26	3.97	4.36	4.55
BSKOAN [29, 36]	PSNR	22.18	23.39	21.58	21.96	21.81	22.51	21.38	21.51	22.04
SwinIRGAN [13]	NIQE	4.39	5.01	4.29	4.40	4.46	4.91	4.08	4.36	4.49
SwiiikOAN [15]	PSNR	22.92	24.10	22.10	22.48	22.18	22.84	21.82	21.83	22.53
BSRGAN-GD (ours)	NĪQĒ	4.04	4.27	3.91	3.95	4.18	4.91	3.63	4.57	4.18
BSRGAN-GD (ours)	PSNR	23.31	24.43	22.51	22.45	22.40	22.69	21.62	21.62	22.63
SwinIRGAN-GD (ours)	NIQE	4.01	4.38	4.11	4.16	4.29	4.55	4.09	4.72	4.29
SwinikGAN-OD (ours)	PSNR	24.24	25.20	23.28	22.98	23.13	22.94	22.17	21.86	23.23
Upper bound (DSDCAN)	NĪQĒ	3.79	4.10	3.88	3.92	3.86	- 4.00 -	3.73	3.87	3.89
Upper bound (BSRGAN)	PSNR	23.66	25.17	22.58	22.58	22.41	22.51	21.77	21.52	22.78



PSNR (dB)/NIOF

22.49/8.45 Bicubic

SRGAN