

Paper, code, and dataset are available: https://github.com/Ephemeral182/UWNR.

Underwater Image Rendering

Underwater Image Rendering aims to generate a true-to-life underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and virtual gaming. We explore two less-touched but challenging problems in underwater image rendering, namely, i) how to render diverse underwater scenes by a single neural network? ii) how to adaptively learn the underwater light fields from natural exemplars, i,e., realistic underwater images? To this end, we propose a neural rendering method for underwater imaging, dubbed UWNR (Underwater Neural Rendering). Specifically, UWNR is a data-driven neural network that implicitly learns the natural generated model from authentic underwater images, avoiding introducing erroneous biases by hand-craft imaging models.

Natural Light Field Retention

According to Retinex theory, the image can be disassembled into:

$$x_u = x_l \cdot x_r$$

We perform a multi-scale Gaussian low-pass filter to obtain underwater light field map:

$$x_g = \frac{1}{3} \sum_{\sigma} Gauss_{\sigma}(x_u), \sigma \in \{15, 6\}$$

We transform it to logarithmic domain and scale it to get the final underwater light field map:

$$x_l = Normalization(\log x_g)$$

Realistic underwater images (top row), light field maps (middle row), and synthetic underwater images generated by the proposed method (bottom row)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging

Tian Ye^{†1}, Sixiang Chen^{†1}, Yun Liu², Yi Ye¹, Erkang Chen^{*1}, Yuche Li³ ¹Jimei University & ²Southwest University & ³China University of Petroleum [†]indicates equal contribution, * indicates corresponding author

60,90

Underwater Image Rendering Framework

- In the training stage, the MHB-Unet is trained to generate the synthetic underwater image with the pair of a real underwater image and its clean ground-truth.

underwater image.

Light Field Consistency Loss

$$LF(J) = \frac{1}{3} \sum_{\sigma} G\alpha$$

Underwater Dark Channel Loss

$$UDC(x) = \frac{1}{2}$$

- In the generating stage, a real underwater image can be used to render any unrelated clean image into an

 $Fauss_{\sigma}(J), \sigma \in \{15, 60, 90\}$

 $\min_{y \in N(x)} \min_{c \in \{g,b\}} x_i^c(y)$ $L_{udc} = \|UDC(I_u) - UDC(x_u)\|_1$

Experiments **Comparative metric analysis of SOTA methods**

Metrics	NYU Dataset(890)			SUID Dataset(890)		
	Clean Images	UWGAN [45]	Ours (UWNR)	Clean Images	UISA [<mark>18</mark>]	Ours(UWNR)
FID	239.36	236.23	221.93	274.67	220.90	216.76
PSNR	-	18.41	18.86	-	12.87	19.32
SSIM	-	0.70	0.77		0.63	0.77
UIQM	-	2.28	2.62	-	2.44	2.63

PSNR, SSIM and UIQM are quantitative results for underwater enhancement of generated images. The underwater enhancement network is Shallow-UWnet (AAAI'21).

Visual comparison with SOTA methods

Large Neural Rendering Underwater Dataset

UWGAN

Outdoor

Indoor