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Underwater Image Rendering Underwater Image Rendering Framework Experiments
Underwater Image Rendering aims to generate a true-to-life - In the training stage, the MHB-Unet is trained to generate Comparative metric analysis of SOTA methods
underwater image from a given clean one, which could be applied the synthetic underwater image with the pair of a real
to various practical applications such as underwater image underwater image and its clean ground-truth. Metrics e —
_ _ _ Clean Images | UWGAN [15] | Ours (UWNR) | Clean Images UISA [14] Ours(UWNR)

enhancement, camera filter, and virtual gaming. We explore two

FID 239.36 236.23 221.93 274.67 220.90 216.76
less-touched but challenging problems in underwater image rendering, - In the generating stage, a real underwater image can - _ - 18 86 _ - 10 39
namely, i) how to render diverse underwater scenes by a single be used to render any unrelated clean image into an SSIM : 0.70 0.77 : 0.63 0.77
neural network? ii) how to adaptively learn the underwater light underwater image. UIQM : 2.8 2.62 : 2,44 2.63
fields from natural exemplars, i,e., realistic underwater images? To -
this end, we propose a neural rendering method for underwater P e S e o | PSNR, 55IM and UIQM are quantitative results for underwater
imaging, dubbed UWNR (Underwater Neural Rendering). Specifically, ' {u,m;f:;f;*;ﬂ;;;:;um}‘ . enhancement of generated IMASES. The underwater enhancement
UWNR is a data-driven neural network that implicitly learns the natural Yu . ] network is Shallow-UWnet (AAAT'21).
generated model from authentic underwater images, avoiding : FREEse SR anRaRstnRenS '
introducing erroneous biases by hand-craft imaging models. - bt kA Visual comparison with SOTA methods
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We perform a multi-scale Gaussian low-pass filter to obtain
underwater light field map:

X, = %Z Gauss_(x,),0 € {15,60,90}
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We transform it to logarithmic domain and scale it to get the Light Field Consistency Loss
final underwater light field map:

]
x, = Normalization(log x,, ) LE() = g; Gauss,(J),0 < {15,60,90f
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o T . I 8 Underwater Dark Channel Loss

UDC(x)= min| min x, (y)

yeN(x)_ce{g,b}

Realistic underwater images (top row), light field maps (middle row), and
synthetic underwater images generated by the proposed method (bottom row) Outdoor




