Motion Aware Double Attention Network for Dynamic Scene Deblurring

Abstract

Problem Statement Event Camera Aided Dynamic Scene Deblurring

Contribution

We propose an event camera-aided two-branch network structure, Motion Aware Double Attention Network (MADANet), which pays special attention to the areas with high blur. First, event data is efficiently used to locate these high-level blur regions, then event data is also injected onto feature space to provide required motion information needed to deblur images.

Methodology

Current challenge: The large pixel sizes of the available event cameras (low spatial resolution)

- MADANet has two sub-networks, as illustrated in Figure 1, the High Blur Region Segmentation (HBRS) module and the deblurring module.
- Given a blurry image and the corresponding event frames the HBRS predicts the high blur regions caused by high relative local motion.
- Having two branches, the MADANet utilizes the predicted high blur mask to process the feature maps through these branches in a way that one branch gives special attention to the high blur regions.
- The event frames are injected directly into the lowerresolution feature space. In this way, low spatial resolution event data can be efficiently used to deblur higher resolution RGB frames.

HBRS

A blurry image and the corresponding estimated attention map, A. The pixels with higher blur level due to relative high speed motion to camera are localize in A.

Mehmet Yamac Dan Yang Huawei Technologies Oy (Finland) Co. Ltd {dan.yang1, mehmet.yamac}@huawei.com

PROPOSED NETWORK, MADANet

Results on GoPro

Ablation

HBRS	Event Injection	n PSNR	SSIM	params
~		36.87	0.970	9.89M
	\checkmark	36.76	0.969	7.74M
\checkmark	\checkmark	37.09	0.971	9.89M
Tabl	a 4. Deuterma		and have	un altra a
Tabl	e 4. Performa	nce of diffe	erent bra	unches
Tabl High-level	e 4. Performa Low-level	nce of diffe	erent bra	unches IM param
Tabl <i>High-level</i> √	e 4. Performa	unce of diffe Shared PSI 36.	erent bra NR SS 48 0.9	IN param 068 6.40M
Tabl High-level √	e 4. Performa	nce of diffe Shared PSI 36. 36.	erent bra NR SS 48 0.9 67 0.9	anches IM param 968 6.40M 969 6.40M
Tabl <i>High-level</i> √	e 4. Performa <i>Low-level</i> S	nce of diffe Shared PSI 36. 36. 37.	erent bra NR SS 48 0.9 67 0.9 09 0.9	IN param M param 068 6.40M 069 6.40M 071 9.89M

*TSlow Motion Dataset.One branch network PSNR is 36.48

Find the Paper

rable 1. Debraining resards on Gor ro databet

Method	PSNR	SSIM	Params
BHA [34]	29.06	0.943	N/A
DeepDeblur [31]	29.23	0.916	11.7M
SVDN [57]	29.81	0.937	N/A
SRN [47]	30.26	0.934	6.8M
DGN [23]	30.49	0.938	11.32M
PSS-NSC [12]	30.92	0.942	2.8M
MT-RNN [36]	31.15	0.945	2.6M
DMPHN [59]	31.20	0.945	21.7M
RADN [38]	31.76	0.953	N/A
LEBMD [18]	31.79	0.949	N/A
PVDNet [42]	31.98	0.928	23.4M
SAPHN [44]	32.02	0.953	N/A
GSTA [45]	32.10	0.960	N/A
MBRNN [35]	32.16	0.953	5.42M
BANET [48]	32.44	0.957	85.6M
MPRNET [58]	32.66	0.959	20.1M
MIMO-UNet++ [7]	32.68	0.959	16.1M
HINet [6]	32.71	0.959	88.6M
ERDN [15]	32.99	0.935	N/A
MADANET	33.09	0.958	9.9M
MADANET+	33.84	0.964	16.9M

Conclusion

Key features

- Double usage of event data
- Investigating the impact of motion segmentation
- Double branch, double attention mechanism in network
- Event frame injection on low resolution feature space