

Introduction

- Super-resolution models predict the missing high-frequency information of the HR images from the given LR image.
- Predicting not only high-frequency but also low-frequency information given LR images is inefficient.
- We propose FS-NCSR (Frequency Separated Noise-Conditioned) Normalizing Flow for Super Resolution), which applies frequency separation to NCSR.

Methods

- Given a LR image, our goal is to learn a diverse super-resolution space corresponding to that image.
- The flow-based super-resolution model configures a mapping $f\theta: X \rightarrow Z$ between the desired data distribution X and latent space distribution Z, by maximizing the negative log-likelihood:

$$-\log p_X(x) = -\log p_Z(f_\theta(x)) - \log \left|\det \frac{\partial f_\theta}{\partial x}(x)\right|$$

SRFlow [1] and NCSR [2] acheived more diverse and equally photorealistic super-resolution results, compared to GAN-based models (e.g. ESRGAN [3]).

RGB image

High Frequency

High-frequency information is relatively sparse compared to its original RGB images.

[1] Lugmayr, Andreas, et al. "Srflow: Learning the super-resolution space with normalizing flow." European conference on computer vision. Springer, Cham, 2020. [2] Kim, Younggeun, and Donghee Son. "Noise conditional flow model for learning the super-resolution space." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

FS-NCSR: Increasing Diversity of the Super-Resolution Space via Frequency Separation and Noise-Conditioned Normalizing Flow

Ki-Ung Song*, Dongseok Shim*, Kang-wook Kim*, Jae-young Lee, Younggeun Kim Seoul National University, Seoul, Republic of Korea / Deepest, Seoul, Republic of Korea {sk851, tlaehdtjr01, full324, jerry96, eyfydsyd97}@snu.ac.kr

||. (1)|

- We adopt frequency separation to NCSR, namely FS-NCSR.
- \succ The LR image contains sufficient information in the low-frequency domain of the desired HR image x, thus, a bicubic downsamplingupsampling process with scale factor s can be interpreted as a lowpass filer, L_s .
- \succ With a simple low-pass filter, the LR image can be seen as a lowpass filtered image, which leads to a simple high-pass filter H_s .

$$L_s(x) = ((x)_{s\downarrow})_{s\uparrow}, \quad H_s(x) = x$$

- From the image pair of LR and HR images, the readily defined highpass filter enables a frequency separation, an extraction of highfrequency information of the HR image.
- The below image is an overview of the FS-NCSR. FS-NCSR focuses on restoring high-frequency information with frequency separation and noise-conditioning.

[3] Wang, Xintao, et al. "Esrgan: Enhanced super-resolution generative adversarial networks." Proceedings of the European conference on computer vision (ECCV) workshops. 2018.

 $x_{hf} = x - L_s(x).$ (2)

Results

to the frequency separation.

Model	Diversity↑	LPIPS↓	LR PSNR↑	Model	Diversity↑	LPIPS↓	LR PSNR†
RRDB [33]	0	0.253	49.20	RRDB [33]	0	0.419	45.43
ESRGAN [33]	0	0.124	39.03	ESRGAN [33]	0	0.277	31.35
ESRGAN+ [24]	22.13	0.279	35.45	SRFlow [23]	25.31	0.272	50.00
SRFlow [23]	25.26	0.120	49.97	NCSR [13]	26.8	0.278	44.55
HCFlow [19]	22.73	0.116	49.46	FS-NCSR (Ours)	26.9	0.257	48.90
NCSR [13]	26.72	0.119	50.75				
FS-NCSR (Ours)	29.44	0.127	49.31				

b) Output

Conclusion

FS-NCSR shows the performance in generating diverse superresolution outputs compared to other state-of-the-art algorithms due

c) Output

 \succ With a simple high pass filter using the characteristics of the LR image, FS-NCSR concentrated on filling the missing information in the high-frequency domain of the desired image by frequency separation and increased the diversity of super-resolution outputs.

