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Introduction Results
> Super-resolution models predict the missing high-frequency > We adopt frequency separation to NCSR, namely FS-NCSR. > FS-NCSR shows the performance in generating diverse super-
information of the HR images from the given LR image. > The LR image contains sufficient information in the low-frequency resolution outputs compared to other state-of-the-art algorithms due
> Predicting not only high-frequency but also low-frequency domain of the desired HR image x, thus, a bicubic downsampling- to the frequency separation.
information given LR images is inefficient. upsampling process with scale factor s can be interpreted as a low- Model Diversityt LPIPS| LR PSNRT Model Diversity? ~ LPIPS| LR PSNR?
> We propose FS-NCSR (Frequency Separated Noise-Conditionec pass filer, L _ _ oetn o wm o am mmpy To o oB Bo
Normalizing Flow for Super Resolution), which applies frequency > With a simple low-pass filter, the LR image can be seen as a low- ESRGAN+[24]  22.13 0279  35.45 SRFlow [23] 25.31 0272 50.00
. : ; : : : : ow [23 . . . 3 : * 5
separation to NCSR. pass filtered image, which leads to a simple high-pass filter H,. ﬁgﬂw[w}] D0 BT ES.NCSR (Ours) 269 poARAON
NCSR [13] 26.72 0.119 50.75
Ls(x) = ((2)s))st, Hs(x) =2hp =2 — Le(x). (2) FS-NCSR (Ours) 29.44 0.127 4931

Methods

> Given a LR image, our goal is to learn a diverse super-resolution
space corresponding to that image.

> The flow-based super-resolution model configures a mapping
f@ : X — Z between the desired data distribution X and latent space

> From the image pair of LR and HR images, the readily defined high-
pass filter enables a frequency separation, an extraction of high-
frequency information of the HR image.

distribution Z , by maximizing the negative log-likelihood: > The below image is an overview of the FS-NCSR. FS-NCSR . » o
7, focuses. on restorlng hlgh-f_rgqu_ency iInformation with frequency f ‘ | ‘ ? ‘
—logpx (SU) = — log pz(fe (ZU)) — log | det a—(.’L‘)‘ (1) separation and noise-conditioning. (b) NCSR [173] (c) FS-NCSR (Ours) (d) Ground Truth
L High-resolution
> SRFlow [1] and NCSR [2] achelved more diverse and equally photo- . ieeenbnoag
realistic super-resolution results, compared to GAN-based models — f ..... . RRB |+~ ~HaiENl  (nfoenes) High Pass
thterence i ' Noisy low-resolution Input i
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(e.g. ESRGAN [3)). :
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| M Wl SH" S < > With a simple high pass filter using the characteristics of the LR
| - Y | s Image, FS-NCSR concentrated on filling the missing information in
Nt e i s the high-frequency domain of the desired image by frequency

: iy separation and increased the diversity of super-resolution outputs.
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> High-frequency information is relatively sparse compared to its (inferenicd - e
original RGB images. Outpu
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