

Our Neural ISP + Pre-Trained Detector

- We propose a neural ISP, named GenISP, that can be trained under the guidance of a pre-trained object detector.
- This method eliminates the need of collecting paired low- and normallight images, and can generalize to unseen camera sensors and object detectors.
- We focus on machine perception rather than human perception.
- We contribute a dataset of 7K raw images collected using two cameras, Sony RX100 and Nikon D750, and bounding box annotations of people, *bicycles* and *cars*.
- The dataset is publicly available for task-based benchmarking of future low-light image restoration and low-light object detection.

GenISP: Neural ISP for Low-Light Machine Cognition Yu-An Chen¹ Yu-Sheng Lin¹ Shusil Dangi³ Kai He³ Winston H. Hsu¹² Igor Morawski¹ ¹ National Taiwan University ² Mobile Drive Technology ³ Qualcomm Inc.

GenISP

- A framework for training a neural ISP model for low-light image restoration and enhancement with an object detection dataset.
- Our minimal ISP pre-processing pipeline explicitly incorporates **Color Space Transformation (CST)** matrices available with raw files, instead of encoding CST implicitly.
- This helps **improving the capability to generalize** to unseen sensors and eliminate the need for re-training for each camera model.
- •We propose a two-stage color processing implemented by two imageto-parameter modules: **ConvWB** and **ConvCC**.
- The two modules introduce expert knowledge about ISP and improve the detection results both when CST matrices are available and unavailable.
- We validate in an extensive experimental study that once trained, the proposed model, GenISP, generalizes well to unseen datasets, camera sensors, brightness levels and object detectors.

Results

Tested on	Input	Method	Trained on	Parameters (M)	GMACs	AP
	JPEG	Baseline (Traditional Minimal ISP)		-	-	22.2%
Our Nikon		SID [CVPR 2018]	SID Sony	7.7	562	22.9%
Our Mikon	RAW	Lamba and Mitra [CVPR 2021]	SID Sony	0.78	60	23.0%
		Our	Our Sony	0.12	<u>61</u>	24.5%

object detectors.

RAW Object Detection Dataset

Dataset	Camera Sensor	# classes	# annotated images	# instances
Sony	Sony RX100 VII		3.2k	18.7k
Nikon	Nikon D750	3	4.0k	28.0k
In total	Sony & Nikon		7.2k	46.7k

Summary/Conclusion

- \succ We propose a minimal neural ISP, named GenISP, trained under the guidance of a pretrained object detector.
- \succ GenISP can generalize to unseen camera sensors and object detectors.
- \succ We contribute a raw low-light object detection (QR code) consisting of 7K images.

• Extensive experimental results to validate that GenISP generalizes well to unseen datasets, camera sensors, brightness levels and

