

RePaint: Inpainting using Denoising Diffusion Probabilistic Models

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool "I Zurich

Sample Noise Denoise 75% Denoise 100%

Motivation

- Current Autoregressive and GAN Inpainting Methods:
 - Limited generative capabilities lead to failure for large masks.
 - Design for specific masks lead to fail on sparse masks.
- Diffusion Models showed good generative capabilities.
- The conditioning process for Diffusion Model Inpainting lacked harmonization of the known and generated part.

Contribution

- Method to condition an unconditionally trained Diffusion Models.
- Inference schedule generalizes to any inpainting mask.
- Generate semantically meaningful image completions.
- Harmonize generated and known part for inpainting.
- Analysis of inpainting algorithms on six different masks.

	j = 1		Ĵ	i = 5	j = 10		
r	LPIPS	Votes [%]	LPIPS	Votes [%]	LPIPS	Votes [%]	
5	0.075	42.50±7.7	0.072	46.88±7.8	0.073	53.12±7.8	
10	0.088	$42.50{\pm}7.7$	0.073	$45.62{\pm}7.8$	0.068	$56.25{\pm}7.8$	
15	0.065	$46.25{\pm}7.8$	0.063	$53.12{\pm}5.5$	0.065	$53.75{\pm}7.8$	

Number of Resampling

Method

Overview

• No training or finetur Harmonization of known

Conditioning

 $x_{t-1}^{\text{known}} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})$ $x_{t-1}^{\text{unknown}} \sim \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$ $x_{t-1} = m \odot x_{t-1}^{\text{known}} + (1-m) \odot$

Resampling

Ablation Study

Resampling vs Slowing Down

Т	r	LPIPS	T	r	LPIPS	T	r	LPIPS	Т	r	LPIPS
250	1	0.168	500	1	0.167	750	1	0.179	1000	1	0.161
250	1	0.168	250	2	0.148	250	3	0.142	250	4	0.134

Jump Length

Experiments

Experiments

- Datasets: CelebA-HQ, ImageNet, Pla
- Masks: Thin, Thick, Generate Half, E Line, Super-Resolution
- Class Conditional Inpainting
- Extensive use study

SOTA Comparison ——

ImageNet	Wide		Narrow		Super-Resolve $2 \times$		Altern	
Methods	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	Votes [%]	LPIPS↓	
DSI [31]	0.117	31.7 ± 2.9	0.072	28.6 ± 2.8	0.153	26.9 ± 2.8	0.069	
ICT [40]	0.107	42.9 ± 3.1	0.073	33.0 ± 2.9	0.708	1.1 ± 0.6	0.620	
LaMa [38]	0.105	42.4 ± 3.1	0.061	33.6 ± 2.9	0.272	13.0 ± 2.1	0.121	
RePaint	0.134	Reference	0.064	Reference	0.183	Reference	0.089	

GitHub git.io/RePaint

$x_{t-1}^{\mathrm{unknown}}$
$ = 0 $ $ = 0 $ $ = 0 $ $ = \mathbf{\epsilon} \boldsymbol{\epsilon}_{\theta}(x_{t}, t) + \sigma_{t} z $ $ n) \odot x_{t-1}^{\text{unknown}} $ $, \beta_{t-1} \mathbf{I}) $
aces2 Expand, Every Second

Visual Examples

Class Conditional Inpainting

