

NTIRE 2022 Challenge on Learning the Super-Resolution Space

Zhihao Zhao, Jinhui Tang, Zechao Li, Jinshan Pan Nanjing University of Science and Technology Andreas Lugmayr*, Martin Danelljan*, Radu Timofte* Ki-Ung Song, Dongseok Shim, Kang-wook Kim, Jae-young Lee, Younggeun Kim ETH Zurich Seoul National University

- Stimulate research into leaning the full space of plausible SR
- Establish benchmark protocols and metrics for stochastic SR
- Probe the state-of-the-art in SR
- Compare stochastic generation technologies for Stochastic SR

VAE-Based

Team SR DL

- Best performing VAE-Based Method in NTIRE21
- Use adversarial loss to improve visual quality

General

- Diversity due to stochastic VAE property
- Advantage over Flow: Does not require special model architecture

Diffusion-Based

Teams IMAG_WZ and IMAG_ZW

- Submission to NTRE 22
- **Condition Denoising Diffusion Probabilistic Model**
- Inference:
 - Sample from pure noise
 - Denoise conditioned on low-resolution
 - Generate SR in T steps

MAG ZW

Uses Gamma distribution which better adapts to residual noise

IMLE-Based

Team FutureReference

- High-Quality conditional image generation
- Diverse output
- Training objective reverses the generation process to match SR with real data
- Only Team submitting IMLE
- Submitted to NTIRE21

Method Comparison

4 × Super-Resolution

GitHub git.io/SR22

GAN-Based

 Submitted to NTIRE21 Best performing purely GAN-Based

Uses Spatial Feature Transformation layers to generate stochastic SR

Struggle to generate large diversity in SR Adversarial loss encourages

No purely GAN-Based Method in NTIRE21 reached the required LR-PSNR

Quantitative Results

	LPIPS	LR-PSNR	Div. Score S_{10} [%]	MOR	Final Rank
	0.171	48.14	21.938(3)	$3.57_{(2)}$	2.5
	0.126	50.13	$28.853_{(1)}$	$3.67_{(3)}$	2.5
	0.169	45.20	$27.320_{(2)}$	$3.34_{(1)}$	1.5
(MLE)	0.165	37.51	19.636	-	-
	0.234	39.80	20.508	-	-
	0.110	44.70	13.285	-	-
	0.117	50.54	26.041	-	-
	0.122	49.86	25.008	3.62	-
	0.124	38.74	0.000	3.52	-
	0	∞	-	3.15	-

	LPIPS	LR-PSNR	Div. Score S_{10} [%]	MOR	Final Rank
	0.257	50.37	26.539	4.510	-
IMLR)	0.291	36.51	17.985	4.741	-
	0.237	37.43	13.548	4.850	-
N)	0.311	42.28	14.817	4.797	-
	0.259	48.64	26.941	4.503	-
	0.282	47.72	25.582	4.775	-
	0.284	30.65	0	4.452	-
	0	∞	-	3.173	-

Visual Examples

4 × Super-Resolution

8 × Super-Resolution

Deepest (Flow, 2021)

FutureReference (IMLE)

SR_DL (VAE)

Samples of IMAG WZ

