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Abstract

This paper reviews the NTIRE 2021 challenge on learn-

ing the super-Resolution space. It focuses on the partici-

pating methods and final results. The challenge addresses

the problem of learning a model capable of predicting the

space of plausible super-resolution (SR) images, from a sin-

gle low-resolution image. The model must thus be capa-

ble of sampling diverse outputs, rather than just generating

a single SR image. The goal of the challenge is to spur

research into developing learning formulations and mod-

els better suited for the highly ill-posed SR problem. And

thereby advance the state-of-the-art in the broader SR field.

In order to evaluate the quality of the predicted SR space,

we propose a new evaluation metric and perform a com-

prehensive analysis of the participating methods. The chal-

lenge contains two tracks: 4× and 8× scale factor. In total,

11 teams competed in the final testing phase.

1. Introduction

Single image Super-Resolution (SR) is the task of in-
creasing the resolution of a given image by filling in ad-
ditional high-frequency content. It has been a popular re-
search topic for decades [27, 19, 44, 54, 52, 57, 58, 59, 51,
12, 24, 53, 15, 16, 32, 34, 36, 18, 4, 5, 22, 26, 21] due to
its many applications. The current trend addresses the ill-
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Figure 1. Many High Resolution Images can be downsampled to a

single low-resolution image. Super-resolution is thus an ill-posed

problem. In this challenge the goal is to take this property into

account by promoting methods with a stochastic output.

posed SR problem using deep Convolutional Neural Net-
works (CNNs). While initial methods focused on achieving
high fidelity in terms of PSNR [15, 16, 32, 34, 36]. Recent
work has put further emphasis on generating perceptually
more appealing predictions using for instance adversarial
losses [61, 35, 56].

Usually, super-resolution (SR) is trained using pairs of
high- and low-resolution images. Infinitely many high-
resolution images can be downsampled to the same low-
resolution image. That means that the problem is ill-posed
and cannot be inverted with a deterministic mapping. In-
stead, one can frame the SR problem as learning a stochastic
mapping, capable of sampling from the space of plausible
high-resolution images given a low-resolution image. This
problem has been addressed in recent works [40, 8, 11]. The
one-to-many stochastic formulation of the SR problem al-
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Figure 1. Qualitative comparison between the participating approaches for 4⇥ super-resolution
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Figure 2. Qualitative comparison between the participating approaches for 8⇥ super-resolution

vectors to the same high-resolution image. Therefore, it
creates a diverse set of super-resolutions. Furthermore, dif-
ferently from ESRGAN, it was shown that SRFlow creates
super-resolution that are consistent with the input. They
downsampled the super-resolution using the same kernel as
for the training pair generation and measured the PSNR be-
tween those two low-resolution images to show this prop-
erty. The team Deepest worked on the information content
gap between the HR image and the latent space and adopted
frequency separation in this year’s submission. Noteworthy,
the team njtech&seu used multi-head attention in their ap-
proach to NTIRE 21 [39] and scored the highest Diversity
Score in both 4⇥ and 8⇥. However, their perceptual quality

did not suffice to outperform the baseline SRFlow.
Diffusion-Based The teams IMAG ZW and IMAG WZ
submitted methods using diffusion models [21] which are
known to produce highly stochastic output.
GAN-Based The best performing team in terms of diver-
sity and perception of methods that relied on GAN-based
approaches was the team SSS. We observed that GAN ap-
proaches struggled to generate large diversity in their super-
resolutions. Furthermore, the adversarial loss encourages
hallucinations in the super-resolution and therefore reduces
the LR-PSNR. This method did not reach the set threshold
of 45dB and was not considered for the final human study.
VAE-Based Of methods using VAEs for super-resolution,

8× Super-Resolution

Figure 9. Visual example of diversity in super-resolution samples. The top left image is the input LR image, to the right is the ground truth
and the ten remaining the samples from IMAG WZ. (4⇥)

are based on Gaussian noise, but some recent work [45] has
shown us that the Gamma distribution can be better adapted
to the estimated residual noise in the generation process.
Moreover, these methods can also achieve competitive re-
sults in the generation process. Therefore, they introduced
Gamma noise instead of Gaussian noise and trained the
model with good results.
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Method Comparison

Figure 3. Visualization of improvement in LPIPS for 4⇥ by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle,
Diffusion: Star

Figure 4. Visualization of improvement in MSE for 4⇥ by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle,
Diffusion: Star

the team SR DL performed best. They leveraged the
stochastic properties of VAEs to generate diverse outputs.
An advantage of VAEs over Flow-Based methods is that
they do not pose such strict architectural constraints as the
bijectiveness and the tractability of the Jacobian. To further
improve photo-realism, this team also employed an adver-
sarial loss.
IMLE-based The team FutureReference, who was the only
method using IMLE-based [44] super-resolution, showed
that this approach is also capable of producing high-quality
and diverse outputs. Their training objective reverses the
generation process to match the super-resolutions with real
data.

4.3. Discussion

In this section, we discuss the final evaluation results on
the DIV2K test set of both the 4⇥ and 8⇥ super-resolution
tracks. The quantitative results of this the three teams that
participated this year, the top-performing teams for Flow,
GAN, IMLE, and VAE in the middle section, and finally,
the baselines are provided in Tables 2 and 3. The final eval-
uation for photo-realism is done employing the MOR de-
scribed above. Since the number of methods that can be
compared in the user-study is limited, we did not compare
with all methods for which we report numerical results. For
4⇥, we calculated the score of this year’s submissions and

the baselines, and for 8⇥, we compared the method Deep-
est of this year with the previous year’s methods and the
baselines. Further, we report the LPIPS, LR-PSNR, and the
diversity score. The final ranking is obtained by the average
rank of the MOR and the diversity score.

The method with the highest perceptual quality mea-
sured by the MOR for 4⇥ was submitted by the team
IMAG WZ. They use diffusion models, which are known
for their high perceptual quality. The superiority of this
method can also be observed in the Figure 1. Further visual
results for this method on 4⇥ are shown in Figure 9. Al-
though diffusion models have a strong prior and can there-
fore be guided with little information, this team did not sub-
mit results for 8⇥.

The highest diversity score on 4⇥ was achieved by the
team Deepest. They increased the score over last year’s
approach by using frequency separation. As all previ-
ously submitted purely Flow-based methods, this method
achieves almost perfect consistency with the low-resolution
image of 50.12dB. Samples of super-resolution images
from the same low-resolution patch can be seen in figure 10.

Higher diversity scores compared to the baseline SR-
Flow were only achieved by the Flow-Based and Diffu-
sion Model-based methods submitted to this and last year’s
challenge. Furthermore, the GAN, VAE, and IMLE-based
methods that we compare with achieved a low input consis-

4×Super-Resolution

Figure 5. Visualization of improvement in LPIPS for 8⇥ by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle

Figure 6. Visualization of improvement in MSE for 8⇥ by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle

tency measured by the LR-PSNR, which was below 45dB.
Note that the VAE-based method also uses an adversar-
ial loss, which is known to lower the LR-PSNR. All three
methods submitted this year achieved an LR-PSNR above
45db in both 4⇥ and 8⇥, which was set as a minimum to be
considered low-resolution consistent.

To visualize the diversity score and two of its compo-
nents, we plot it for all methods. Since the score is based
on the assumption that an ideal super-resolution method can
reach the GT arbitrary close, the diversity score should im-
prove with an increasing number of samples. This behavior
can be seen in Figures 3 and 5. Furthermore, the diversity
score defined in NTIRE 21 [39] is not bound to a specific
distance metric. Although we use the LPIPS as the primary
metric, we show that the mean square error shows similar
behavior 4 and 6. For this experiment, we smoothed the er-
ror maps with a moving average kernel of size 16, consistent
with the metrics of last year.

Furthermore, we show two components of the score in-
dividually. On the right side, we depict min

�
d(yk, ŷik)

 M

i=1
showing the local minimum distance between the super-
resolutions and the ground truth. In the middle, we plot
d̄M � 1

K

PK
k=1 min

�
d(yk, ŷik)

 M

i=1
, showing the absolute

local impovement. On the left side we show the final diver-
sity score, which divides the absolute improvement by the
distance of the super-resolution which is globally closest to
the ground truth. Without this last operation, the diversity
score would favor methods with low distance, since it is

harder to get closer to the ground truth if the best sample is
already close.

This year the diffusion model-based IMAG WZ over-
took the Flow-based methods in the final score for 4⇥. Al-
though the team Deepest, the improved version of last year’s
winning team, has a better diversity score, they have worse
perceptual quality. For 8⇥ we only received one submis-
sion which achieves comparable results to last year’s sub-
missions. All participating methods outperform last year’s
approaches using VAE, GAN and IMLE by a large margin
in diversity score.

5. Teams

5.1. Deepest

FS-NCSR: Increasing Diversity of Super-

Resolution Space via Frequency Separation

and Noise-Conditioned Normalizing Flow

This team proposes FS-NCSR (Frequency Separat-
ing Noise-Conditioned Normalizing Flow for Super-
Resolution) where the generative model for super-
resolution only produces the high-frequency elements of
the target high-resolution image x without redundant low-
frequency information. The low-frequency elements of the
high-resolution input x are filtered out by the low-pass fil-
ter during training and the generative super-resolution ar-
chitecture aims to estimate the high-frequency elements of
the target. They utilize bicubic downsampling-upsampling

8×Super-Resolution
Method Comparison

GAN-Based
Team SSS
• Submitted to NTIRE21
• Best performing purely GAN-Based 

method
• Uses Spatial Feature Transformation

layers to generate stochastic SR

General
• Struggle to generate large diversity in SR
• Adversarial loss encourages 

hallucinations
• No purely GAN-Based Method in 

NTIRE21 reached the required LR-PSNR

VAE-Based
Team SR_DL
• Best performing VAE-Based Method in 

NTIRE21
• Use adversarial loss to improve visual

quality

General
• Diversity due to stochastic VAE property
• Advantage over Flow: Does not require 

special model architecture

IMLE-Based
Team FutureReference
• High-Quality conditional image generation
• Diverse output
• Training objective reverses the generation 

process to match SR with real data
• Only Team submitting IMLE
• Submitted to NTIRE21

Flow-Based
General
• Training: Transform high-resolution image 

to noise conditioned on the low-resolution 
image

• Model is invertible and preserves 
probability volume

• Inference: Transform noise to high-
resolution image conditioned on low-
resolution image

Team Deepest
• Submission to NTRE 22
• Noise-Conditioned affine coupling
• Frequency Separation
• Model focuses on high-frequency outputs
• Add noise on the sparce high-frequency 

image for more diversity
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Figure 1. Algorithm overview. Our method proposes a frequency separation on the target image and applies noise on high-frequency input
with noise-conditioned coupling layers for diverse super-resolution outputs.

convolution, affine injector, and two conditional affine cou-
pling (noise affine coupling and low-resolution affine cou-
pling), which are the same as NCSR. Gaussian noise is
added to the input during the forward process in training,
and our method applies noise on the high-frequency input
xhf .

v ⇠ N (0,⌃)

x+
hf = xhf + v

y+ = y + w

z = f�1(x+
hf |y

+, v)

(3)

where w indicates noise resized to the same size as the low-
resolution input y.

We formulate the loss function only with negative log-
likelihood Lnll similar to [5, 4],

Lnll = � log px|y,v(x|y, v, ✓)

= � log pz(f✓(x; y, v))� log | det @f✓
@y

(x; y, v)|.
(4)
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Diffusion-Based
Teams IMAG_WZ and IMAG_ZW
• Submission to NTRE 22
• Condition Denoising Diffusion 

Probabilistic Model
• Inference:

• Sample from pure noise
• Denoise conditioned on low-resolution
• Generate SR in T steps

I

MAG_ZW
• Uses Gamma distribution which better 

adapts to residual noise
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Figure 7. Algorithm overview. Our method proposes a frequency
separation on the target image and applies noise on high-frequency
input with noise-conditioned coupling layers for diverse super-
resolution outputs.

as the low-pass filter with a specific scale factor s and the
high-frequency input xhf is calculated by subtracting low-
frequency elements from the high-resolution target x,

xhf = x� ((x)s#)s", (2)

where (·)s# and (·)s" indicate bicubic downsampling and
upsampling with the scale factor s respectively.

They leverage a normalizing flow based super-resolution
model, SRFlow [41], as a baseline for high-quality diverse
outputs compared to GAN which produces deterministic
single outputs. The structure of our model basically fol-
lows SRFlow which consists of a squeeze module, tran-
sition step, conditional flow step, and split module. The
main difference is that the input of the forward process in
the normalizing flow is not the high-resolution image x as
suggested in SRFlow, but the filtered high-frequency infor-
mation xhf of the high-resolution image.

xhf = fn � fn�1 � · · · � f1(z) (3)

where z and f(·) indicate Gaussian latent variable and flow
model which consists of invertible transformation.

The motivation of the flow-based architecture is to map
the simple distribution pz to the complex image distribution
px with multi-layer invertible transformation. However, the
mismatch of the manifold input and output data distribution
induces poor generation performance, and SoftFlow [27] al-
leviate such mismatch by estimating a conditional perturbed
data distribution rather than estimating direct input distribu-
tion.

NCSR [29] applies noise-conditioned affine coupling
suggested in SoftFlow to the SRFlow architecture for di-
verse outputs without noisy artifacts. The transition step of
our proposed method consists of 5 components: ActNorm,
1⇥1 convolution, affine injector, and two conditional affine
coupling (noise affine coupling and low-resolution affine
coupling), which are the same as NCSR. Gaussian noise
is added to the input during the forward process in training,

Figure 8. The forward diffusion process q(left to right) gradually
adds noise to the target image. The reverse inference process p
(right to left) The reverse process p is to restore the image under
the conditions of the source image x by iterative method. Source
image x is not shown here.

and our method applies noise on the high-frequency input
xhf .

v ⇠ N (0,⌃)

x+
hf = xhf + v

y+ = y + w

z = f�1(x+
hf |y

+, v)

(4)

where w indicates noise resized to the same size as the low-
resolution input y.

They formulate the loss function only with negative log-
likelihood Lnll similar to [41, 29],

Lnll = � log px|y,v(x|y, v, ✓)

= � log pz(f✓(x; y, v))� log | det @f✓
@y

(x; y, v)|.
(5)

5.2. IMAG WZ: Diffusion Models for Learning

the Super Resolution Space and IMAG ZW:

Learning the Super-Resolution Space Using

Diffusion Gamma Models

This team uses Conditional DDPMs, which generates a
target image by T-step refinement. The model starts with a
pure noise image, iteratively refines the corresponding im-
age over T successful iterations according to the learned
conditional transformation distribution. (see Figure 8)

The distribution of intermediate images in the inference
chain is determined in the forward process that gradually
adding noise to the signal through the Markov chain. The
goal of our model is to reverse the diffusion process by itera-
tively recovering its target image from noise given an image
through a reverse Markov chain.

As a result, they learn the reverse chain by using a neural
denoising model which can estimate the noise.

5.2.1 IMAG ZW: Learning the Super-Resolution

Space Using Diffusion Gamma Models

This team submitted a variation of the approach from
IMAG WZ differing in the noise generation process. In the
previous work on diffusion models, most of the methods

Motivation
• Super-Resolution (SR) is an ill-posed 

problem
• Many SR methods map a low-resolution 

image to one high-resolution image

Goals 
• Stimulate research into leaning the full 

space of plausible SR
• Establish benchmark protocols and

metrics for stochastic SR
• Probe the state-of-the-art in SR
• Compare stochastic generation 

technologies for Stochastic SR

the space of plausible super-resolutions. Since the ground
truth is an element in that distribution and the ideal super-
resolution algorithm samples the whole space, one obtain
an image which is arbitrarily close to the ground truth by
sampling enough images. Therefore, methods that span the
space of plausible super-resolutions gain closeness to the
ground truth when sampling more super-resolutions.

In the case of uniform regions like sky, the super-
resolution methods should not generate a diverse set of
high-resolutions, but only the uniform patch. Methods that
artificially add diversity for such regions generate structures
that are not contained in the original image. Therefore such
attempts do not improve in diversity score with increasing
number of samples and further harms the method for the
perceptual metric described above.

Another aspect being considered is the high-
dimensionality of the high-resolution images. Since
we consider mega-pixel images, the closeness to the
ground truth on the entire image is almost the same for all
samples of stochastic super-resolution methods. Different
samples will have regions that are closer to the ground
truth, and other regions that are closer to another plausible
high-resolution image. Due to the high-dimensionality this
effect evens out for the average distance to the ground truth
when considering multiple samples. Therefore we consider
local patches to measure the diversity score.

The used diversity score is as follows, where M is the
number of sampled super-resolutions, yk the k-th patch in
the original HR image y, and ŷiMi=1 the samples from the
super-resolution method. The detailed derivation can be
found in [39].

SM =
1

d̄M

 
d̄M � 1

K

KX

k=1

min
�
d(yk, ŷ

i
k)
 M

i=1

!
. (1)

3.3. Low Resolution Consistency

To measure how much information is preserved in the
super-resolved image from the low-resolution image, we
measure the LR-PSNR. It is computed as the PSNR be-
tween the input LR image and the predicted sample down-
sampled with the given bicubic kernel. The goal of this
challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams
were required to submit results, code/executables, and fact-
sheets for their approaches. Three teams of the 54 registered
participants submitted to the final test phase. The methods
of the teams that entered the final phase are described in
Section 5 and the teams’ members and affiliations are shown
in Section Appendix A.

4.1. Baselines

As in the first challenge [39], we compare the submitted
method from this and last year to the following baselines.
ESRGAN To compare the submissions with a photo-
realistic super-resolution method, we use ESRGAN [58] as
reference. Since it is deterministic, the diversity score is
zero.
SRFlow As the baseline with diverse super-resolution
output, we use the Flow-based method SRFlow [41]. It
conditions the image generation method [30] for super-
resolution. Different from the ESRGAN, the generated
super-resolution images are highly consistent with the in-
put low-resolution image.

4.2. Architectures and Main Ideas

Here we discuss the main ideas of this and last year’s
submitted methods. The underlying technologies and the
use of external data are indicated in Table 1.
Flow-Based The winning team “Deepest (21)” based their
approach on SRFlow [41] and submitted a modified ver-
sion this year. Their strategy is to train a Normalizing
Flow model to transform a high-resolution image condi-
tioned on a low-resolution image into a latent variable. The
training objective is to minimize the negative log-likelihood
of this latent variable belonging to the gaussian distribu-
tion. For inference, they use the property of Normalizing
Flows [12] that they are invertible. They sample a latent
vector of Gaussian noise and transform it, conditioned on
the low-resolution image to a high-resolution image. Since
the method is bijective, it cannot map two different latent

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

IMAG ZW 0.171 48.14 21.938(3) 3.57(2) 2.5
Deepest 0.126 50.13 28.853(1) 3.67(3) 2.5
IMAG WZ 0.169 45.20 27.320(2) 3.34(1) 1.5

FutureReference (IMLE) 0.165 37.51 19.636 - -
SR DL (VAE) 0.234 39.80 20.508 - -
SSS (GAN) 0.110 44.70 13.285 - -
Deepest (Flow) 0.117 50.54 26.041 - -

SRFlow 0.122 49.86 25.008 3.62 -
ESRGAN 0.124 38.74 0.000 3.52 -
GT 0 1 - 3.15 -

Table 2. Quantitative comparison of participating teams. (4⇥)

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

Deepest 0.257 50.37 26.539 4.510 -

FutureReference (IMLR) 0.291 36.51 17.985 4.741 -
SSS (GAN) 0.237 37.43 13.548 4.850 -
SR DL (VAE-GAN) 0.311 42.28 14.817 4.797 -
Deepest (Flow) 0.259 48.64 26.941 4.503 -

SRFlow 0.282 47.72 25.582 4.775 -
ESRGAN 0.284 30.65 0 4.452 -
GT 0 1 - 3.173 -

Table 3. Quantitative comparison of participating teams. (8⇥)

the space of plausible super-resolutions. Since the ground
truth is an element in that distribution and the ideal super-
resolution algorithm samples the whole space, one obtain
an image which is arbitrarily close to the ground truth by
sampling enough images. Therefore, methods that span the
space of plausible super-resolutions gain closeness to the
ground truth when sampling more super-resolutions.

In the case of uniform regions like sky, the super-
resolution methods should not generate a diverse set of
high-resolutions, but only the uniform patch. Methods that
artificially add diversity for such regions generate structures
that are not contained in the original image. Therefore such
attempts do not improve in diversity score with increasing
number of samples and further harms the method for the
perceptual metric described above.

Another aspect being considered is the high-
dimensionality of the high-resolution images. Since
we consider mega-pixel images, the closeness to the
ground truth on the entire image is almost the same for all
samples of stochastic super-resolution methods. Different
samples will have regions that are closer to the ground
truth, and other regions that are closer to another plausible
high-resolution image. Due to the high-dimensionality this
effect evens out for the average distance to the ground truth
when considering multiple samples. Therefore we consider
local patches to measure the diversity score.

The used diversity score is as follows, where M is the
number of sampled super-resolutions, yk the k-th patch in
the original HR image y, and ŷiMi=1 the samples from the
super-resolution method. The detailed derivation can be
found in [39].
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3.3. Low Resolution Consistency

To measure how much information is preserved in the
super-resolved image from the low-resolution image, we
measure the LR-PSNR. It is computed as the PSNR be-
tween the input LR image and the predicted sample down-
sampled with the given bicubic kernel. The goal of this
challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams
were required to submit results, code/executables, and fact-
sheets for their approaches. Three teams of the 54 registered
participants submitted to the final test phase. The methods
of the teams that entered the final phase are described in
Section 5 and the teams’ members and affiliations are shown
in Section Appendix A.

4.1. Baselines

As in the first challenge [39], we compare the submitted
method from this and last year to the following baselines.
ESRGAN To compare the submissions with a photo-
realistic super-resolution method, we use ESRGAN [58] as
reference. Since it is deterministic, the diversity score is
zero.
SRFlow As the baseline with diverse super-resolution
output, we use the Flow-based method SRFlow [41]. It
conditions the image generation method [30] for super-
resolution. Different from the ESRGAN, the generated
super-resolution images are highly consistent with the in-
put low-resolution image.

4.2. Architectures and Main Ideas

Here we discuss the main ideas of this and last year’s
submitted methods. The underlying technologies and the
use of external data are indicated in Table 1.
Flow-Based The winning team “Deepest (21)” based their
approach on SRFlow [41] and submitted a modified ver-
sion this year. Their strategy is to train a Normalizing
Flow model to transform a high-resolution image condi-
tioned on a low-resolution image into a latent variable. The
training objective is to minimize the negative log-likelihood
of this latent variable belonging to the gaussian distribu-
tion. For inference, they use the property of Normalizing
Flows [12] that they are invertible. They sample a latent
vector of Gaussian noise and transform it, conditioned on
the low-resolution image to a high-resolution image. Since
the method is bijective, it cannot map two different latent

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

IMAG ZW 0.171 48.14 21.938(3) 3.57(2) 2.5
Deepest 0.126 50.13 28.853(1) 3.67(3) 2.5
IMAG WZ 0.169 45.20 27.320(2) 3.34(1) 1.5

FutureReference (IMLE) 0.165 37.51 19.636 - -
SR DL (VAE) 0.234 39.80 20.508 - -
SSS (GAN) 0.110 44.70 13.285 - -
Deepest (Flow) 0.117 50.54 26.041 - -

SRFlow 0.122 49.86 25.008 3.62 -
ESRGAN 0.124 38.74 0.000 3.52 -
GT 0 1 - 3.15 -

Table 2. Quantitative comparison of participating teams. (4⇥)

Team LPIPS LR-PSNR Div. Score MOR Final
S10 [%] Rank

Deepest 0.257 50.37 26.539 4.510 -

FutureReference (IMLR) 0.291 36.51 17.985 4.741 -
SSS (GAN) 0.237 37.43 13.548 4.850 -
SR DL (VAE-GAN) 0.311 42.28 14.817 4.797 -
Deepest (Flow) 0.259 48.64 26.941 4.503 -

SRFlow 0.282 47.72 25.582 4.775 -
ESRGAN 0.284 30.65 0 4.452 -
GT 0 1 - 3.173 -

Table 3. Quantitative comparison of participating teams. (8⇥)

Quantitative Results

8×
4×

★ DDPM ⚫ Flow     ⬛ VAE    ➕ IMLE    ▲ GAN

GT IMAG WZ Deepest IMAG ZW ESRGAN

SSS (GAN) Deepest (Flow, 2021) SRFlow FutureReference (IMLE) SR DL (VAE)
Figure 1. Qualitative comparison between the participating approaches for 4⇥ super-resolution

GT Deepest ESRGAN SSS (GAN)

Deepest (Flow, 2021) FutureReference (IMLE) SR DL (VAE) SRFlow
Figure 2. Qualitative comparison between the participating approaches for 8⇥ super-resolution

vectors to the same high-resolution image. Therefore, it
creates a diverse set of super-resolutions. Furthermore, dif-
ferently from ESRGAN, it was shown that SRFlow creates
super-resolution that are consistent with the input. They
downsampled the super-resolution using the same kernel as
for the training pair generation and measured the PSNR be-
tween those two low-resolution images to show this prop-
erty. The team Deepest worked on the information content
gap between the HR image and the latent space and adopted
frequency separation in this year’s submission. Noteworthy,
the team njtech&seu used multi-head attention in their ap-
proach to NTIRE 21 [39] and scored the highest Diversity
Score in both 4⇥ and 8⇥. However, their perceptual quality

did not suffice to outperform the baseline SRFlow.
Diffusion-Based The teams IMAG ZW and IMAG WZ
submitted methods using diffusion models [21] which are
known to produce highly stochastic output.
GAN-Based The best performing team in terms of diver-
sity and perception of methods that relied on GAN-based
approaches was the team SSS. We observed that GAN ap-
proaches struggled to generate large diversity in their super-
resolutions. Furthermore, the adversarial loss encourages
hallucinations in the super-resolution and therefore reduces
the LR-PSNR. This method did not reach the set threshold
of 45dB and was not considered for the final human study.
VAE-Based Of methods using VAEs for super-resolution,


