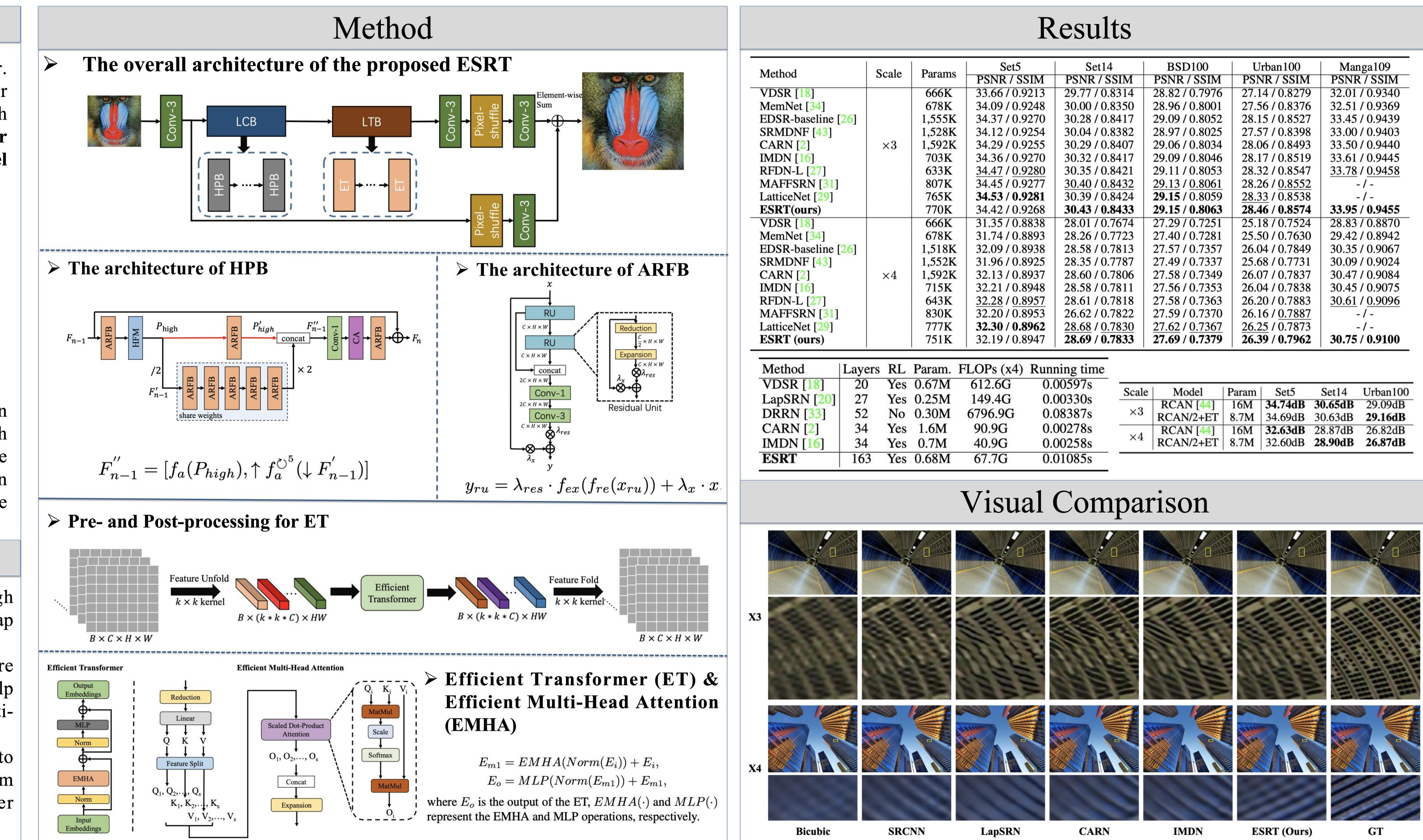


Motivation

The inner areas of the boxes with the same color are similar to each other. Therefore, these similar image patches can be used as reference images for each other, so that the texture details of the certain patch can be restored with reference patches. Inspired by this, we aim to introduce the Transformer into the SISR task since it has a strong feature expression ability to model such a long-term dependency in the image.



Recently, some Vision-Transformer have been proposed for computer vision tasks. However, these methods often occupy heavy GPU memory, which greatly limits their flexibility and application scenarios. Moreover, these methods cannot be directly transferred to SISR since the image restoration task often take a larger resolution image as input, which will take up huge memory. Therefore, we aim to explore a more efficient Transformer.

Contributions

- > We propose a Lightweight CNN Backbone (LCB), which use High Preserving Blocks (HPBs) to dynamically adjust the size of the feature map to extract deep features with a low computational cost.
- > We propose a Lightweight Transformer Backbone (LTB) to capture long-term dependencies between similar patches in an image with the help of the specially designed Efficient Transformer (ET) and Efficient Multi-Head Attention (EMHA) mechanism.
- > A novel model called Efficient SR Transformer (ESRT) is proposed to effectively enhance the feature expression ability and the long-term dependence of similar patches in an image, so as to achieve better performance with low computational cost.

Transformer for Single Image Super-Resolution Zhisheng Lu^{1†}, Juncheng Li^{2†}, Hong Liu^{1*}, Chaoyan Huang³, Linlin Zhang¹, Tieyong Zeng² ¹Peking University Shenzhen Graduate School ²The Chinese University of Hong Kong ³Nanjing University of Posts and Telecommunications

Set5	Set14	BSD100	Urban100	Manga109
SNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
3.66 / 0.9213	29.77 / 0.8314	28.82 / 0.7976	27.14 / 0.8279	32.01 / 0.9340
1.09 / 0.9248	30.00 / 0.8350	28.96 / 0.8001	27.56 / 0.8376	32.51 / 0.9369
1.37 / 0.9270	30.28 / 0.8417	29.09 / 0.8052	28.15 / 0.8527	33.45 / 0.9439
4.12/0.9254	30.04 / 0.8382	28.97 / 0.8025	27.57 / 0.8398	33.00 / 0.9403
1.29 / 0.9255	30.29 / 0.8407	29.06 / 0.8034	28.06 / 0.8493	33.50 / 0.9440
4.36/0.9270	30.32 / 0.8417	29.09 / 0.8046	28.17 / 0.8519	33.61 / 0.9445
4.47 / <u>0.9280</u>	30.35 / 0.8421	29.11 / 0.8053	28.32 / 0.8547	<u>33.78</u> / <u>0.9458</u>
4.45 / 0.9277	<u>30.40</u> / <u>0.8432</u>	<u>29.13 / 0.8061</u>	28.26 / <u>0.8552</u>	- / -
.53 / 0.9281	30.39 / 0.8424	29.15 / 0.8059	28.33 / 0.8538	- / -
4.42 / 0.9268	30.43 / 0.8433	29.15 / 0.8063	28.46 / 0.8574	33.95 / 0.9455
.35 / 0.8838	28.01 / 0.7674	27.29 / 0.7251	25.18 / 0.7524	28.83 / 0.8870
.74 / 0.8893	28.26 / 0.7723	27.40 / 0.7281	25.50 / 0.7630	29.42 / 0.8942
2.09 / 0.8938	28.58 / 0.7813	27.57 / 0.7357	26.04 / 0.7849	30.35 / 0.9067
.96 / 0.8925	28.35 / 0.7787	27.49 / 0.7337	25.68 / 0.7731	30.09 / 0.9024
2.13 / 0.8937	28.60 / 0.7806	27.58 / 0.7349	26.07 / 0.7837	30.47 / 0.9084
2.21 / 0.8948	28.58 / 0.7811	27.56 / 0.7353	26.04 / 0.7838	30.45 / 0.9075
<u>2.28</u> / <u>0.8957</u>	28.61 / 0.7818	27.58 / 0.7363	26.20 / 0.7883	<u>30.61</u> / <u>0.9096</u>
2.20/0.8953	26.62 / 0.7822	27.59 / 0.7370	26.16 / <u>0.7887</u>	- / -
2.30 / 0.8962	<u>28.68</u> / <u>0.7830</u>	<u>27.62</u> / <u>0.7367</u>	<u>26.25</u> / 0.7873	- / -
2.19 / 0.8947	28.69 / 0.7833	27.69 / 0.7379	26.39 / 0.7962	30.75 / 0.9100

Scale	Model	Param	Set5	Set14	Urban100
$\times 3$	RCAN [44]	16M	34.74dB	30.65dB	29.09dB
	RCAN/2+ET	8.7M	34.69dB	30.63dB	29.16dB
$\times 4$	RCAN [44]	16M	32.63dB	28.87dB	26.82dB
	RCAN/2+ET	8.7M	32.60dB	28.90dB	26.87dB