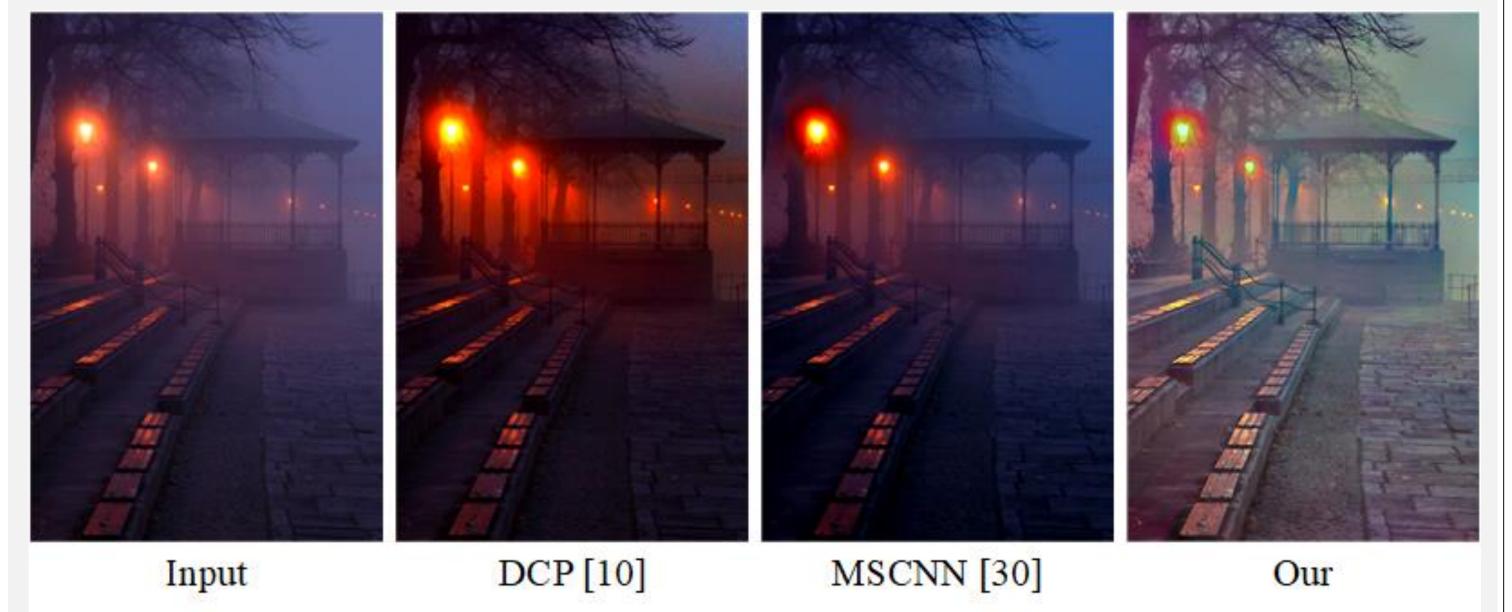

Nighttime Image Dehazing Based on Variational Decomposition Model

CVPR 19-24 2022 NEW ORLEANS - LOUISIANA



Yun Liu, Zhongsheng Yan, Aimin Wu, Tian Ye, Yuche Li

Multiple complex degraded factors-Nighttime hazy scenes

Traditional daytime haze removal methods cannot deal with nighttime hazy scenes.

Linear Model

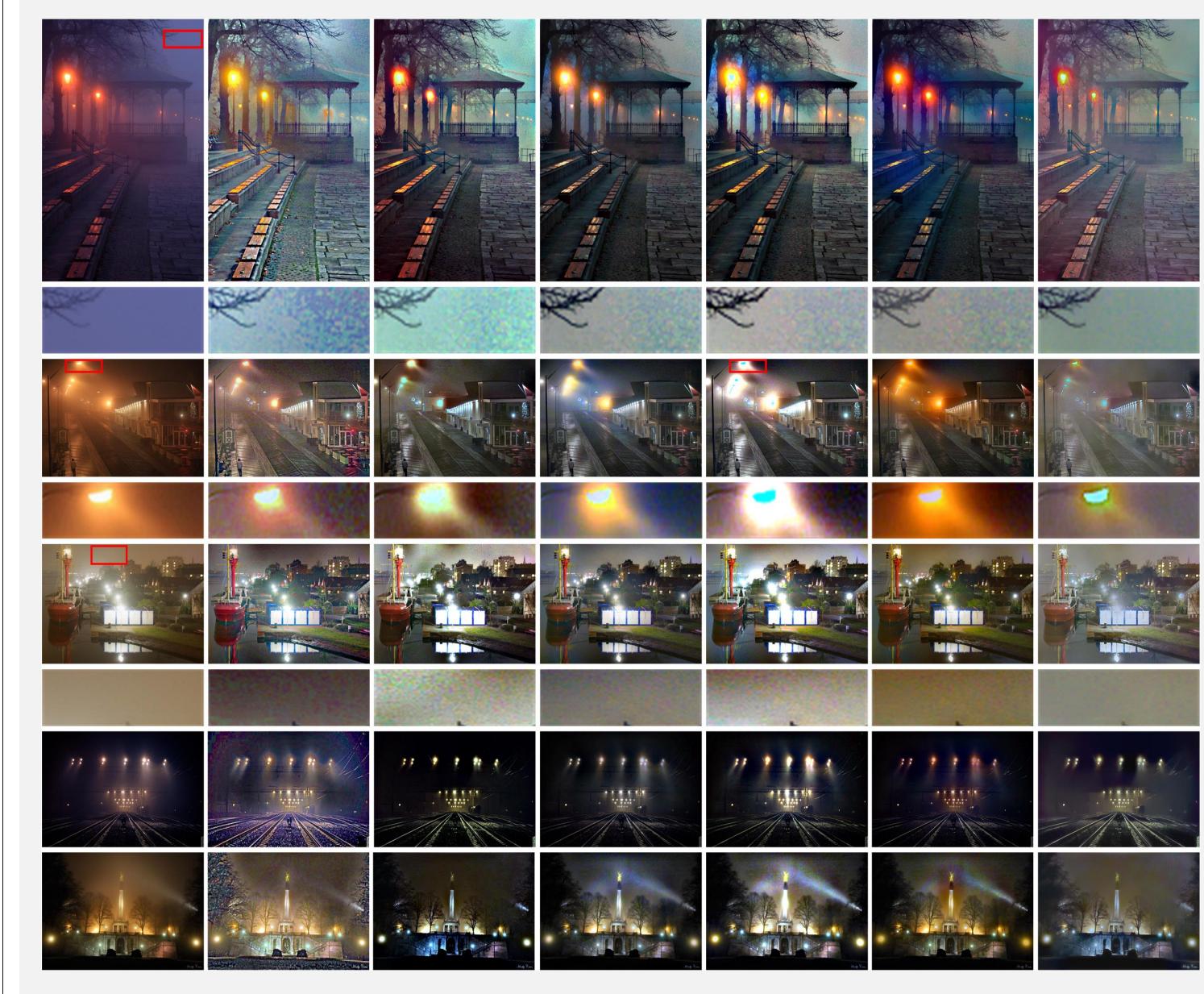
$$I(x) = S(x) + D(x) + N(x) + G(x)$$

Variational Decomposition Model

$$\underset{\mathbf{S}, \mathbf{D}, \mathbf{N}}{\operatorname{arg min}} \left\| \mathbf{S} + \mathbf{D} + \mathbf{N} - \mathbf{H} \right\|_{2}^{2} + \alpha \left\| \nabla \mathbf{S} \right\|_{1} + \beta \left\| \nabla \mathbf{D} - \nabla \mathbf{H} \right\|_{0} + \delta \left\| \mathbf{N} \right\|_{2}^{2}$$

Solutions-ADMM

maximum iterations K . Initialization: $\mathbf{R}_0 = t_0 (x)$, $\mathbf{N}_0 = 0$, $k = 0$. 1: for $k = 1$ to K do 2: Update \mathbf{S}^{k+1} using (6); 3: Update \mathbf{D}^{k+1} using (8); 4: Update \mathbf{N}^{k+1} using (9); 5: Update \mathbf{T}^{k+1} using (11); 6: Update \mathbf{L}^{k+1} using (13); 7: Update \mathbf{Z}_1^{k+1} , \mathbf{Z}_2^{k+1} and μ^k using (14);	_	out: pre-processed image H , parameters α , β , and δ ,
 for k = 1 to K do Update S^{k+1} using (6); Update D^{k+1} using (8); Update N^{k+1} using (9); Update T^{k+1} using (11); Update L^{k+1} using (13); 		
 Update S^{k+1} using (6); Update D^{k+1} using (8); Update N^{k+1} using (9); Update T^{k+1} using (11); Update L^{k+1} using (13); 	Init	nanzation: $\mathbf{R}_0 = t_0(x), \mathbf{N}_0 = 0, k = 0.$
 3: Update D^{k+1} using (8); 4: Update N^{k+1} using (9); 5: Update T^{k+1} using (11); 6: Update L^{k+1} using (13); 	1: f	for $k = 1$ to K do
4: Update \mathbf{N}^{k+1} using (9); 5: Update \mathbf{T}^{k+1} using (11); 6: Update \mathbf{L}^{k+1} using (13);	2:	Update S^{k+1} using (6);
5: Update \mathbf{T}^{k+1} using (11); 6: Update \mathbf{L}^{k+1} using (13);	3:	Update \mathbf{D}^{k+1} using (8);
6: Update \mathbf{L}^{k+1} using (13);	4:	Update \mathbb{N}^{k+1} using (9);
	5:	Update T^{k+1} using (11);
7: Update \mathbf{Z}_{1}^{k+1} , \mathbf{Z}_{2}^{k+1} and μ^{k} using (14);	6:	Update L^{k+1} using (13);
	7:	Update \mathbf{Z}_1^{k+1} , \mathbf{Z}_2^{k+1} and μ^k using (14);
8: End	8: F	End


Multi-scale decomposition

$$\underset{\mathbf{B}}{\operatorname{arg\,min}} \|\mathbf{B} - \mathbf{S}'\|_{2}^{2} + \lambda \|\nabla \mathbf{B}\|_{1}$$

Noise Suppression

Qualitative Comparisons on Real-world Nighttime hazy Images

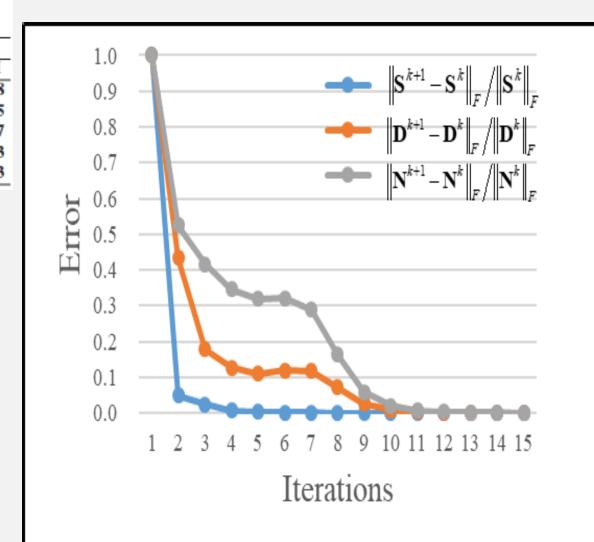

Quantitative comparisons on synthetic images

		Table	e 1. Quanti	tative con	nparisons o	n syntheti	ic nighttime	e hazy ima	ges in Fig.	4.		
Examples -	NDIM	[40]	GS [21]	MRP	[39]	MRP_Fa	ster [39]	OSFD	[41]	Ou	ır
Examples .	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
E1	12.3621	0.6162	13.7171	0.6645	14.1856	0.7247	13.7692	0.6869	14.4284	0.7277	15.8444	0.7498
E2	14.6954	0.6829	14.9221	0.7145	14.8665	0.7400	15.8630	0.7332	14.3735	0.7488	16.6698	0.7895
E3	14.9046	0.6092	14.3896	0.6284	15.7950	0.6683	14.5727	0.6462	16.5706	0.6793	16.6678	0.6887
E4	12.9891	0.5956	14.7477	0.6447	14.0008	0.6617	14.2825	0.6465	14.1065	0.6753	15.7061	0.7013
E5	13.4413	0.6130	12.8841	0.6252	14.9017	0.6893	15.1977	0.6527	14.6146	0.6940	16.8963	0.7543

Quantitative comparisons on synthetic dataset NHM

Methods	PSNR	SSIM
NDIM [40]	12.4924	0.5752
GS [21]	11.8963	0.5899
MRP [39]	12.9928	0.6299
MRP_Faster [39]	13.1847	0.6164
OSFD [41]	13.3027	0.6435
Our	13.6196	0.6734

Convergence Speed of Proposed Model

