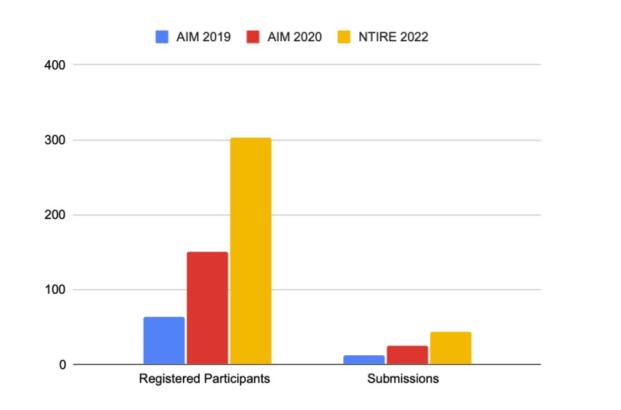


NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results

Yawei Li

Kai Zhang

Introduction


The task of the challenge was to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding highresolution images. The aim was to design a network for single image superresolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29.00dB on DIV2K validation set. IMDN is set as the baseline for efficiency measurement. The challenge had 3 tracks including the main track (runtime), sub-track one (model complexity), and sub-track two (overall performance).

Challenge Tracks

Main Track: Runtime Track. In this track, the practical runtime performance of the submissions is evaluated. The rankings of the teams are determined directly by the absolute value of the average runtime on the validation set and test set.

Sub-Track 1: Model Complexity Track. In this track, the number of parameters and FLOPs are considered. And the rankings of the two metrics are summed up to determine a final ranking in this track.

Sub-Track 2: Overall Performance Track. In this track, all the five metrics mentioned in the description of the challenge including runtime, parameters, FLOPs, activations, and GPU memory are considered.

Team	Main Track	Sub- Track 1	Sub- Track 2	PSNR [Val.]	PSNR [Test]	Ave. Time [ms]	#Params [M]	FLOPs [G]	#Acts [M]	GPU Mem. [M]	#Conv
ByteESR	1	22(11)	33(2)	29.00	28.72	27.11(1)	0.317(11)	19.70(11)	80.05(6)	377.91(4)	39
NJU_Jet	2	37(18)	44(6)	29.00	28.69	28.07(2)	0.341(18)	22.28(19)	72.09(4)	204.60(1)	34
NEESR	3	10(4)	27(1)	29.01	28.71	29.97(3)	0.272(4)	16.86(6)	79.59(5)	575.99(9)	59
Super	4	26(12)	55(10)	29.00	28.71	32.09(4)	0.326(14)	20.06(12)	93.82(10)	663.07(15)	59
MegSR	5	18(9)	43(5)	29.00	28.68	32.59(5)	0.290(9)	17.70(9)	91.72 ₍₈₎	640.63(12)	64
rainbow	6	16(8)	34(3)	29.01	28.74	34.10(6)	0.276(6)	17.98(10)	92.80(9)	309.23(3)	59
VMCL_Taobao	7	29(14)	57(11)	29.01	28.68	34.24(7)	0.323(13)	20.97(16)	98.67(11)	633.00(10)	40
Bilibili AI	8	15(7)	41(4)	29.00	28.70	34.67(8)	0.283(8)	17.61(7)	90.50(7)	633.74(11)	64
NKU-ESR	9	12(5)	48(7)	29.00	28.66	34.81(9)	0.276(7)	16.73(5)	111.12(13)	662.51(14)	65
NJUST_RESTORARION	10	54(27)	89(15)	28.99	28.68	35.76(10)	0.421(28)	27.67(26)	108.66(12)	643.95(13)	52
TOVBU	11	43(21)	96(19)	29.00	28.71	38.32(11)	0.376(23)	22.38(20)	113.55(15)	867.17(27)	64
Alpan Team	12	18(10)	51(9)	29.01	28.75	39.63(12)	0.326(15)	12.31(3)	115.52(16)	439.37(5)	132
Dragon	13	38(19)	70(13)	29.01	28.69	41.80(13)	0.358(20)	21.11(18)	120.15(17)	260.00(2)	131
TieGuoDun Team	14	54(27)	104(21)	28.95	28.65	42.35(14)	0.433(29)	27.10(25)	112.03(14)	788.13(22)	64
HiImageTeam	15	7(3)	70(13)	29.00	28.72	47.75(15)	$0.242_{(3)}$	$14.51_{(4)}$	151.36(23)	861.84(25)	100
xilinxSR	16	66(34)	107(22)	29.05	28.75	48.20(16)	0.790(34)	51.76(32)	136.31(18)	471.37(7)	38
cipher	17	50(24)	111(23)	29.00	28.72	51.42(17)	0.407(26)	25.25(24)	155.35(24)	770.82(20)	67
NJU_MCG	18	13(6)	66(12)	28.99	28.71	52.02(18)	0.275(5)	17.65(8)	212.35(27)	511.08(8)	84
IMGWLH	19	34(17)	91(17)	29.01	28.72	56.34(19)	0.362(21)	20.10(13)	136.35(19)	753.02(19)	113
imglhl	20	45(22)	92(18)	29.03	28.75	56.88(20)	0.381(24)	23.26(21)	144.05(21)	451.21(6)	127
whu_sigma	21	63(32)	132(30)	29.02	28.73	61.04(21)	0.705(33)	43.88(30)	142.91(20)	1011.54(28)	64
Aselsan Research	22	27(13)	98(20)	29.02	28.73	63.18(22)	0.317(12)	20.71(15)	206.05(26)	799.52(23)	134
Drinktea	23	59 ₍₃₁₎	121(27)	29.00	28.70	75.52(23)	0.589(31)	$36.92_{(28)}$	148.05(22)	734.54(17)	67
GDUT_SR	24	50(24)	136(31)	29.05	28.75	75.70(24)	$0.414_{(27)}$	24.80(23)	$260.05_{(28)}$	1457.98(34)	195
Giantpandacv	25	63(32)	150(34)	29.07	28.76	87.87(25)	0.683(32)	45.07(31)	361.23(31)	1272.95(31)	122
neptune	26	39(20)	123(29)	28.99	28.69	101.69(26)	0.316(10)	38.03(29)	269.48(29)	1179.05(29)	45
XPixel	27	3(1)	49(8)	29.01	28.69	140.47(27)	0.156(1)	9.50(2)	65.76 ₍₃₎	729.94(16)	43
NJUST_ESR	28	3(1)	89(15)	28.96	28.68	164.80(28)	0.176(2)	8.73(1)	160.43(25)	1346.74(33)	25
TeamInception	29	57(30)	146(33)	29.12	28.82	171.56(29)	0.505(30)	32.42(27)	502.27(34)	866.16(26)	74
cceNBgdd	30	33(16)	114(24)	28.97	28.67	180.60(30)	0.339(16)	$21.11_{(17)}$	404.16(33)	739.65(18)	197
ZLZ	31	55(29)	118(26)	29.00	28.72	183.43(31)	$0.372_{(22)}$	64.45(33)	57.51(2)	1244.23(30)	16
Express	32	$31_{(15)}$	$117_{(25)}$	29.04	28.77	203.16(32)	$0.339_{(17)}$	$20.41_{(14)}$	325.53(30)	853.27(24)	148
Just Try	33	70(35)	$170_{(35)}$	29.12	28.81	247.90(33)	$0.832_{(35)}$	135.30(35)	392.43(32)	2387.93(35)	207
ncepu_explorers	34	47(23)	137(32)	29.09	28.79	317.66(34)	0.390(25)	$23.73_{(22)}$	994.25 ₍₃₅₎	771.54(21)	374
mju_mnu	35	53(26)	121(27)	29.06	28.79	332.28(35)	0.345(19)	78.81(34)	46.76(1)	1310.72(32)	40

Main Track: Runtime Track

1st ByteESR team, 2nd NJU Jet team, 3rd NEESR team The average runtime of the first three solutions is below 30 ms. The first 12 teams proposed a solution with average runtime lower than 40 ms.

Sub-Track 1: Model Complexity Track

1st Xpixel team and NJUST ESR team, 3rd HiImageTeam

The solution proposed by XPixel team has slightly fewer parameters while the solution proposed by NJUST ESR team has fewer computation.

Sub-Track 2: Overall Performance 1st NEESR team, 2nd ByteESR team, 3rd rainbow team

The xilinxSR team achieved the best PSNR fidelity metric (29.05dB on the validation set and 29.75dB on test set) among the solutions that outperforms the baseline network IMDN in terms of runtime and number of parameters.

RaduTimofte

Luc van Gool

Results

others

Architectures and Ideas

- . Modifying the architecture of information multi-distillation block (IMDB) and residual feature distillation block (RFDB) is the mainstream technique.
- Multi-stage information distillation might influence the inference speed of the super efficient models.
- Reparameterization could bring slight performance improvement.
- 4. Filter decomposition methods could effectively reduce the model complexity.
- Network pruning began to play a role.
- 6. Activation function is an important factor.
- Design of loss functions is also among the consideration.
- 8. Advanced training strategy guarantees the performance of the network.

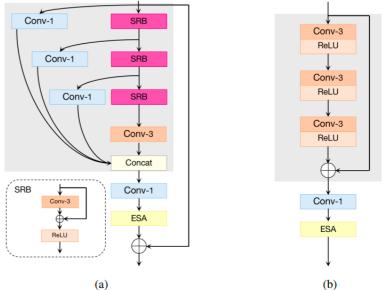
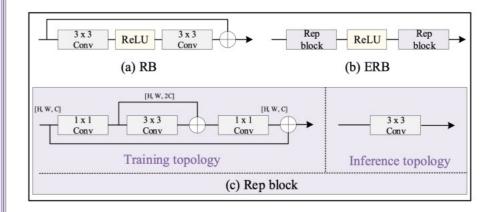



Figure 2. ByteESR Team: (a) Residual feature distillation block (RFDB). (b) Residual local feature block (RLFB). (c) Enhanced Spatial Attention (ESA).

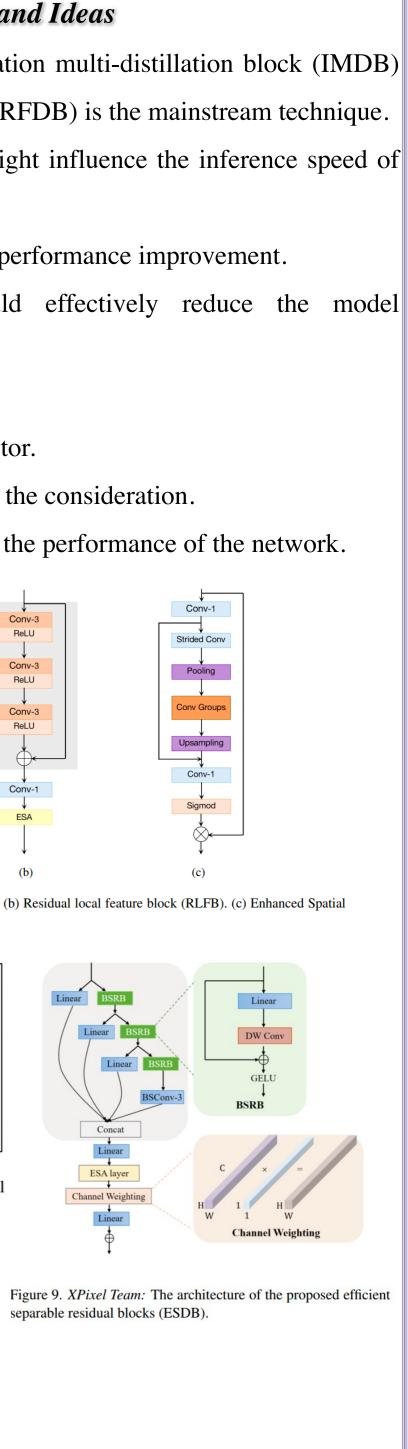


Figure 5. NJU_Jet Team: Comparison between a normal residual block (RB) [48] and an enhanced residual block (ERB).

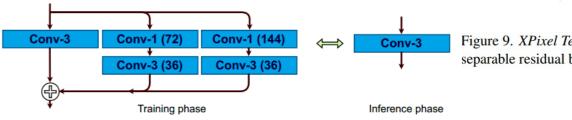


Figure 13. rainbow Team: A schematic diagram of structural reparameterization strategy.