

Motivation & Contributions

Different from previous works that blindly increase the depth of the network, we explore the degradation mechanism of the noisy image and aim to introduce the knowledge distillation strategy to the model.

- > We propose a lightweight and efficient Multiple Degradation and **Reconstruction Network (MDRN)** for image denoising, which can progressively remove image noise.
- > We propose a Multi-Scale Aggregation Group (MSAG) for feature extraction. MSAB is the basic components of MDRN, which can extract rich multi-scale features with few parameters.
- > We propose two Heterogeneous Knowledge Distillation Strategies (**HKDS**) for SID. With the help of HKDS, MDRN can learn richer and more accurate features from the teacher model.

Method

Multiple Degradation and Reconstruction Network (MDRN) `____`_ **Noisy Image** ------Downsample Operation Multi-scale Restoration Upsample Operation **Aggregation Group** Passageway (MSAG)

Multiple Degradation and Reconstruction Network for Single Image Denoising via Knowledge Distillation Juncheng Li^{1,2}, Hanhui Yang¹, Qiaosi Yi², Faming Fang², Guangwei Gao³, Tieyong Zeng¹*, Guixu Zhang² ¹The Chinese University of Hong Kong ²East China Normal University ³Nanjing University of Posts and Telecommunications

Denoised Image

Parm.	Set12	BSD68	Urban100
-	$\sigma = 50$	σ =50	$\sigma=50$
6.86M	27.54	26.39	27.22
2.38M	27.56	26.41	27.24
2.38M	27.63	26.46	27.38
Parm.	Kodak24	CBSD68	Urban100
-	σ =70	<i>σ</i> =70	σ =70
6.86M	27.94	26.75	27.28
2.38M	27.96	26.77	27.32
2.38M	28.00	26.81	27.45
	Parm. - 6.86M 2.38M 2.38M Parm. - 6.86M 2.38M 2.38M 2.38M	Parm.Set12 $ \sigma$ =506.86M27.542.38M27.562.38M27.63Parm.Kodak24 $ \sigma$ =706.86M27.942.38M27.962.38M28.00	Parm.Set12BSD68 $ \sigma$ =50 σ =506.86M27.5426.392.38M27.5626.412.38M27.6326.46Parm.Kodak24CBSD68- σ =70 σ =706.86M27.9426.752.38M27.9626.772.38M28.0026.81

Method	Set12			BSD68			Urban100		
Noise Level	$\sigma=15$	$\sigma=25$	$\sigma=50$	$\sigma=15$	<i>σ</i> =25	$\sigma = 50$	$\sigma=15$	$\sigma=25$	$\sigma=50$
BM3D	32.37	29.97	26.72	31.08	28.57	25.62	32.34	29.70	25.94
RED30	32.83	30.48	27.34	31.72	29.26	26.35	32.75	30.21	26.64
TNRD	32.50	30.06	26.81	31.42	28.92	25.97	31.98	29.29	25.71
IRCNN	32.77	30.38	27.14	31.63	29.15	26.19	32.49	29.82	26.14
DnCNN	32.86	30.43	27.18	31.73	29.23	26.23	32.68	29.97	26.28
FFDNet	32.75	30.43	27.32	31.63	29.19	26.29	32.42	29.92	26.52
MLEFGN	33.04	30.66	27.54	31.81	29.34	26.39	33.21	30.64	27.22
MFENANN	32.95	30.63	27.55	31.73	29.29	26.38	-	-	
DRNet	33.01	30.64	27.46	31.81	29.35	26.39	-	-	
MDRN (Ours)	33.06	30.67	27.56	31.83	29.36	26.41	33.22	30.67	27.24
MDRN+ (Ours)	33.10	30.71	27.60	31.86	29.39	26.44	33.31	30.78	27.31

Method	Kodar24		CBSD68			Urban100			
Noise Level	$\sigma=30$	$\sigma=50$	σ =70	$\sigma=30$	$\sigma=50$	σ =70	$\sigma=30$	$\sigma=50$	σ =70
CBM3D	30.89	28.63	27.27	29.73	27.38	26.00	30.36	27.94	26.31
RED30	29.71	27.62	26.36	28.46	26.35	25.08	29.02	26.40	24.74
TNRD	28.83	27.17	24.94	27.64	25.96	23.83	27.40	25.52	22.63
IRCNN	31.24	28.93	N/A	30.22	27.86	N/A	30.28	27.69	N/A
DnCNN	31.39	29.16	27.64	30.40	28.01	26.56	30.28	28.16	26.17
MemNet	29.67	27.65	26.40	28.39	26.33	25.08	28.93	26.53	24.93
FFDNet	31.39	29.10	27.68	30.31	27.96	26.53	30.53	28.05	26.39
MLEFGN	31.67	29.38	27.94	30.56	28.21	26.75	31.32	28.92	27.28
MDRN (Ours)	31.68	29.40	27.96	30.57	28.23	26.77	31.35	28.96	27.32
MDRN+ (Ours)	31.73	29.44	28.01	30.61	28.27	26.82	31.41	29.00	27.37

Results