

Introduction

- The method of extracting image gradient information by CNN is effective but ignores the key fine-grained information.
- Traditional regression networks use an MSE function to supervise the network output, but do not take into account the logical relationship of image quality score ranking.
- Our work focuses on efficiently extracting contrast gradient information of image pairs in the full reference problem.

Proposed Method

Combined with Central Difference Convolution (CDC), which can efficiently extract gradient features and semantic features.

Input feature map

Gradient Siamese Network (GSN), based on CDC and spatial attention. A multi-level feature fusion module that concatenates features at the same level and then fuses features from different levels.

Image Quality Assessment with Gradient Siamese Network Heng Cong* Lingzhi Fu* Rongyu Zhang* Yusheng Zhang Hao Wang Jiarong He Jin Gao

Loss Function

Public Comparison

For CSIQ and TID2013, our proposed GSN is more robust and

ranked in the top two in terms of main score. CSIQ Method MS PLCC SRC PLCC SRCC KRCC PSNR [13 0.81 1.629 0.677 SSIM [1 0.72 0.777MS-SSIM [0.830 0.786 1.795 VSI [3 0.900 MAD [2 0.827 VIF [38 0.67 FSIM [3 1.855 GMSD [4 0.855 1.895 DeepIQA [] 0.834 0.83 0.892 0.715 1.769 0.859 1.772 0.749 0.67 0.689 0.767 1.857 0.855 0.830 0.929 0.801 1.896 0.892 0.885 0.944 0.951 GSN(ours)

Output feature map

$$\widehat{Q}_{i} - \frac{1}{N} \sum_{i=1}^{N} \widehat{Q}_{i} \Big|^{q} \Big)^{\frac{1}{q}}$$

$$\widehat{W}_{i} = \frac{exp\widehat{Q}_{i}}{\sum_{i=1}^{N} exp\widehat{Q}_{i}}$$

$$\widehat{W}_{i} = \frac{expQ_{i}}{\sum_{i=1}^{N} exp\widehat{Q}_{i}}$$

$$W_{i} = \frac{expQ_{i}}{\sum_{i=1}^{N} expQ_{i}}$$

$$W_{i} = \frac{expQ_{i}}{\sum_{i=1}^{N} expQ_{i}}$$

$$U = MSE(\widehat{S}_{i} - S_{i})$$

$$L_{list}(Q, \widehat{Q}) = \sum_{i=1}^{N} \widehat{W}_{i} \times \log \frac{\widehat{W}_{i}}{W_{i}}$$

$$L(Q, \widehat{Q}) = \alpha \cdot L_{pair}(Q, \widehat{Q}) + \beta \cdot L_{list}(Q, \widehat{Q})$$

D2013						
С	KRCC	MS				
7	0.496	1.364				
7	0.545	1.504				
5	0.605	1.616				
7	0.718	1.797				
1	0.604	1.608				
7	0.518	1.448				
1	0.667	1.728				
)	0.625	1.639				
4	0.634	1.659				
1	0.631	1.665				
5	0.683	1.735				
	0.497	1.419				
)	0.639	1.685				
5	0.699	1.776				

Ablation Studies

Model	Conv	.Туре		Loss	PIPAL [1	1]	1.0 -	 MAE Norm-in-N Ours 	Norm •••			
1110401	CDC	CNN	MSE	MSE+KL	PLCC/SRCC	MS	0.8 -					
M 1					0.785/0.751	1.536	SOM				Section : Section	
M2					0.802/0.787	1.589	0.4 -					
M3					0.828/0.804	1.632	0.2 -			· · · ·	•	
M4					0.835/0.811	1.646	0.0 -	0.0 0.2	0.4	0.6	0.8	1.0

NTIRE 2022 IQA-FR Challenge

GSN won the second place in NTIRE track 1 **Full-Reference!**

Visual result from the validation set of the NTIRE 2022 challenge.

0.905(4)0.985(2)0.020(1)0.616(1) 1554.65(2 35.95(2) 0.949(1)0.993(1)0.076(5)0.610(2)

Conclusion

- fine-grained.

All models using CDC can achieve an MS value over 1.6, which demonstrates that CDC is beneficial and effective in IQA. The MS score of M2 (CNN & MSE+KL) is 0.053 higher than the MS score of M1 (CNN & MSE) by adding KL function.

Team	mainScore	PLCC	SRCC
1st	1.651	0.828	0.822
GSN(ours)	1.642	0.827	0.815
3rd	1.640	0.823	0.817
4th	1.541	0.775	0.766
5th	1.538	0.772	0.765
6th	1.501	0.763	0.737
7th	1.450	0.763	0.737
8th	1.403	0.703	0.701

30.45(5) 0.889(5)0.981(4)0.051(3) 0.591(3)

32.76(3) 0.907(3)0.985(3)0.066(4)0.582(4)

27.45(6) 0.925(2) 0.956(5) 0.037(2) 0.528(6)

30.63(4) 0.770(6) 0.946(6) 0.079(6) 0.530(5)

Central difference convolution is introduced to GSN for the image

A fusion structure is incorporated which handles multi-level features. KL divergence loss helps improve prediction accuracy.