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Continuous Video
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◆ Videos are recorded with limited resolutions and frame rates, 
introducing challenges in down-stream vision tasks.

How to represent a video continuously?

1. Define a canonical 3D space (2D coordinate + Time)

2. Predict RGB signals for any 3D coordinate in the space

3. Query coordinates of all pixels in the target frame for prediction

Space-Time Super-Resolution

◆ VideoINR expands interpolation space, and supports 
extrapolation on out-of-distribution up-sampling scales.
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◼ Extract discrete feature from input using an encoder
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⚫ Spatial INR defines a continuous spatial feature space

⚫ Temporal INR defines a continuous motion flow field
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◆ Perform spatial warping based on motion flow

◆ Decode for the final prediction

◆ We propose VideoINR for continuous video representation, 
which is capable of generating new videos at arbitrary spatial 
resolutions and frame rates from the original input video.

Results

TMNet

VideoINR

Code and more results at 
http://zeyuan-chen.com/VideoINR
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