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Existing leading methods for spectral reconstruction (SR) focus on designing 
deeper or wider convolutional neural networks (CNNs) to learn the end-to-end 
mapping from the RGB image to its hyperspectral image (HSI). These CNN-
based methods achieve impressive restoration performance while showing 
limitations in capturing the long-range dependencies and self-similarity prior. To 
cope with this problem, we propose a novel Transformer-based method, Multi-
stage Spectral-wise Transformer (MST++),  for efficient spectral reconstruction. 
In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is 
based on the HSI spatially sparse while spectrally self-similar nature to compose 
the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-
stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to 
extract multi-resolution contextual information. Finally, our MST++, cascaded by 
several SSTs, progressively improves the reconstruction quality from coarse to 
fine. Comprehensive experiments show that our MST++ significantly outperforms 
other state-of-the-art methods. Our MST++ is based on our CVPR 2022 work
MST and has won the first place in NTIRE 2022 Spectral Recovery Challenge.

Method

Ø Spectral-wise Multi-head Self-Attention
Suppose the input tokens of S-MSA as 𝐗 that is projected into 𝐐, 𝐊, 𝐕 as

𝐐 = 𝐗𝐖𝐐,𝐊 = 𝐗𝐖𝐊, 𝐕 = 𝐗𝐖𝐕

Subsequently, 𝐐,𝐊, 𝐕 are split into 𝑁 heads along the spectral dimension and
the self-attention is calculated inside each ℎ𝑒𝑎𝑑- as

𝐀- = softmax 𝜎-𝐊7-𝐐- , 	ℎ𝑒𝑎𝑑-= 𝐕-𝐀-

Then the outputs of 𝑁 heads are aggregated by a linear projection and is
added with a position embedding that is produced by function 𝑓: · as

𝐒 −𝐌𝐒𝐀 𝐗 = Concate-CDE ℎ𝑒𝑎𝑑- 𝐖 + 𝑓:(𝐕)

We compare the computational complexity of our S-MSA, global spatial-wise
MSA (G-MSA), and local window-based MSA (W-MSA) as

Ø Quantitative Results

Ø Qualitative Results

our contributions:
• The first Transformer MST++

• A novel S-MSA

• SOTA results

• A Strong Baseline

Code and models are publicly available at

Code for MST ： https://github.com/caiyuanhao1998/MST
Code for MST++ ： https://github.com/caiyuanhao1998/MST-plus-plus
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Ø Overall Architecture

In figure (a), MST++ is cascaded by 𝑁I Single-stage Spectral-wise Transformers
(SSTs). In figure (b), SST adopts a three-level U-shaped architecture. Details of
Spectral-wise Attention Block (SAB), Feed-Forward Network (FFN), and Spectral-
wise Multi-head Self-Attention (S-MSA) are shown in figure (c), (d), and (e).

𝑓: · consists of two depth-wise conv 3×3, a GELU activation, and reshape
operation. Finally, we reshape the above results to get the output feature maps

Ø Discussion with Previous MSA Modules

(a) G-MSA (b) W-MSA (c) S-MSA
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Ø Ensemble Strategies
We adopt self ensemble, multi-scale ensemble, and top-k multi-model ensemble
when testing on the test-challenge dataset. The top-k multi-model ensemble
averages the outpuits of MIRNet, MPRet, Restormer, HINet, MST, and MST++.
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 Ground Truth
 EDSR, corr: 0.9980
 HDNet, corr: 0.9981
 HINet, corr: 0.9925
 HRNet, corr: 0.9979
 HSCNN+, corr: 0.9975
 MIRNet, corr: 0.9927
 MPRNet, corr: 0.9979
 Restormer, corr: 0.9983
 MST-L, corr: 0.9892
 MST++, corr: 0.9993
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 Ground Truth
 EDSR, corr: 0.9965
 HDNet, corr: 0.9906
 HINet, corr: 0.9634
 HRNet, corr: 0.9957
 HSCNN+, corr: 0.9915
 MIRNet, corr: 0.8817
 MPRNet, corr: 0.9576
 Restormer, corr: 0.9359
 MST-L, corr: 0.9506
 MST++, corr: 0.9980


