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Introduction Experiment
Existing leading methods for spectral reconstruction (SR) focus on designing » Spectral-wise Multi-head Self-Attention » Quantitative Results
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based on the HSI spatially sparse while spectrally self-similar nature to compose
the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-
stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to
extract multi-resolution contextual information. Finally, our MST++, cascaded by
several SSTs, progressively improves the reconstruction quality from coarse to
fine. Comprehensive experiments show that our MST++ significantly outperforms
other state-of-the-art methods. Our MST++ is based on our CVPR 2022 work
MST and has won the first place in NTIRE 2022 Spectral Recovery Challenge.

Code for MST : https://github.com/caiyuanhao1998/MST
Code for MST++ : https://github.com/caiyuanhao1998/MST-plus-plus

Then the outputs of N heads are aggregated by a linear projection and is

added with a position embedding that is produced by function f,(-) as » Qualitative Results
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f»(+) consists of two depth-wise conv 3 x 3, a GELU activation, and reshape
operation. Finally, we reshape the above results to get the output feature maps
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» Discussion with Previous MSA Modules
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In figure (a), MST++ is cascaded by N, Single-stage Spectral-wise Transformers
(SSTs). In figure (b), SST adopts a three-level U-shaped architecture. Details of
Spectral-wise Attention Block (SAB), Feed-Forward Network (FFN), and Spectral-
wise Multi-head Self-Attention (S-MSA) are shown in figure (c), (d), and (e).

» Ensemble Strategies

We adopt self ensemble, multi-scale ensemble, and top-k multi-model ensemble
when testing on the test-challenge dataset. The top-k multi-model ensemble
averages the outpuits of MIRNet, MPRet, Restormer, HINet, MST, and MST++.
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