1. Overview

Background: Existing inpainting works:

O RF

e Hard to generalize well to multiple inpainting scenarios simultaneously.

* Require specific design for different types of masks.
Motivation:

* We address this problem by proposing a progressive learning scheme to an Semantic Aware

Generative Adversarial Network (SA-Patch GAN).
Contributions:

* Progressive learning are applied to the network to make the overall training procedure more stable.
*  We use semantic information from a pretrained deep network to enhanced semantic awareness of

the discriminator in a Patch-GAN, which is a stabilization our training and improve our

performance.

* Our method has achieved the 3rd place on the NTIRE 2022 Inpainting public leaderboard (the 3rd
on both PSNR and SSIM) and significantly out- performs existing methods on benchmark datasets.

2. Methods

Total network.

We progressively apply our backbone in different scales at different image size in a
coarse-to-fine manner. We use Coarse-to-fine network architecture with gated conv

as backbone. The network architecture of our improved model is shown in Figure.

Progressive learning Method

We use multi scales strategy in our method. Firstly, we set the number of stages as

three in the i, % % scales inpainting task. That is, in each stage, the model performs

%x — ix : %x - %x 1x - 1x inpainting tasks sequentially. The training starts from

stage one, which produces the ix scale image from the first stage. After the end of

first stage, we unsampled it to %x scale and combined 1t with background pixels

from %x scale input as the input of stage 2. We froze stage 1 parameters when train
stage 2. When we train stage3, the procedure is the same with stage 2. We also

found that adding two extra scale \i—ix and gx after stage 1 and stage 2 could

improve model performance.

Semantic aware patch GAN (SA-Patch GAN)
In the original cGAN paper, a one-hot class label y is passed
into the discriminator in addition to the image x to be

classified as real or fake. The discriminator output is: Strokes Interpolation Completion

D (z*,y) = fs (¢ (z") +{d(z*), f,(¥)) (D) Mean | Thick | Medium | Thin | Every N Lines | Nearest Neighbor | Completion | Expand
¢ is a learned function mapping an image to a vector. f; is a PSNR 1 | 22.89 | 23.330 | 23.992 | 27.284 31.772 24.873 16.130 12.877
learned fully-connected layer that maps that vector to a SSIMT | 0.785 | 0.866 | 0.879 0.910 0.940 0.757 0.683 0.454
scalar, f, is a learned fully-connected layer mapping y to a LPIPS | | 0.248 | 0.158 0.134 0.112 0.147 0.347 0.522 0.313
vector of the same size as the output of ¢. FID | | 20.314 | 15.213 | 12.341 | 10.214 14.906 21.924 37.484 30.098

We change Eq.1 to add semantic condition:

D (x*, M,x) = f, (¢ (", M))+(¢ (x", M), fc(C(x))) (2
M 1s the input mask. The architecture of ¢ 1s consists of six
stride convolutional layers, followed by a fully connected
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We list some examples of mask in 7 types and split these masks into
three kinds of inpainting tasks: Inpainting, Interpolation, Out painting.

Tasks Inpainting
Mask Type Medium Strokes Thin Strokes
Case
Tasks
Mask Type| Nearest Neighbor

Case
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The network architecture of our improved model

Generator

' : Gated conv

,,«' : Dilated conv

Patch Discriminator
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Quantitative results of our proposed model on Partial of Places datasets with different mask types.

Our Partial test set contains 1, 000 x 7 x 4 images for seven type of mask on four dataset.

Comparing our methods with

SOTA out-painting tasks on Places

dataset. We provide FID scores
since FID correlates with

Quantitative comparison of our model with SOAT conventional
inpainting methods on Places2 validation images (1,000) with

irregular masks. ¥ denotes the results are copy from [32]

layer. The output dimensions of ¢ and f. are both 256. perceptual quality best. PSNR % SSIM * FID |
Method Thin | Thick | Thin | Thick

Coarse-to-Fine deep inpainting network Method FID | ECT[17]1 | 2652 | 22.23 | 0.880 | 0.731 | 30.13
The network architecture of our improved model is shown in Boundless [22] 35 02 GCt [31] 2653 | 21.19 | 0.881 | 0.729 | 30.13
Figure. We use progressive learning based on Deepfillv2. We NS-outnaint [2¢ 5 O. 63 MEDFE! [15] | 26.47 | 22.27 | 0.877 | 0717 | 31.40
select Deepfillv2 because it achieves a good balance between Ol.l paint [29] ' + | ' ' i ' '
efficiency and performance. DeepFillv2 [30, 2 ] 56.14 PICT | | ] 26.10 | 21.50 | 0.865 | 0.680 | 33.47
The model is based on gated convolutions which is used to Image2StyleGAN [1] | 25.36 ICT" [25] : 26.6 | 23.32 | 0.880 | 0.724 | 25.42
learn a dynamic feature selection mechanism for each channel In&Out [3] 23.57 AOT-GAN [33] | 26.03 | 22.62 | 0.890 | 0.804 | 5.47
at each spatial location across all layers, significantly improve Very_Long [29] 13.71 BAT-Fill* [32] | 26.47 | 21.74 | 0.879 | 0.704 | 22.16
the color consistency and inpainting quality of free-form masks Ours 18.33 pluralistic [36] | 26.47 | 21.74 | 0.879 | 0.704 | 25.42
and inputs. Ours 27.28 | 23.33 | 0.910 | 0.866 | 18.33

3. Experimental results
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Quantitative results of our model on Interpolation task compared to Boundless[22] and CV2 Bicubic interpolation.
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Interpolation-inpainting Task for Every N Line and Nearest Neighbor on four datasets.

Mask Result

Ablation study on Partial of Places test set. The test set contains 1,000 images for each type

of mask. B means our backbone. B3, demonstrate 3 stage multi-scale progressive learning.

and B;; demonstrate 5 stage backbone (adding two extra scale gx and \/Z—Ex after stage 1 and

stage 2). SA means add semantic aware Patch GAN discriminator in the model.

Our Method

Strokes Interpolation Completion
Mean | Thick | Medium | Thin | N Lines | Neighbor | Comp | Expand
PSNRT | 22.89 | 23.330 | 23.992 | 27.284 | 31.772 24.873 16.130 | 12.877
whole model | SSIMT | 0.785 | 0.866 0.879 0.910 0.940 0.757 0.688 0.454
LPIPS| | 0.248 | 0.158 0.134 0.112 0.147 0.347 0.522 0.313
FID| | 20.314 | 15.213 | 12.341 | 10.214 | 14.906 21.924 | 37.484 | 30.098
Mean | Thick | Medium | Thin | N Lines | Neighbor | Comp | Expand
R PSNR?T | 22.01 | 22.506 | 23.505 | 27.127 | 30.739 22.709 16.280 | 13.192
)\‘\A\&‘\‘\\ " Bss+SA SSIMt | 0.776 | 0.862 0.877 0.907 0.922 0.675 0.662 0.471
AL LPIPS| | 0.260 | 0.180 0.142 0.131 0.166 0.359 0.540 0.301
' FID] | 21.613 | 17.201 | 13.251 | 12.005 | 16.211 23.014 | 38.129 | 31.482
Mean | Thick | Medium | Thin | N Lines | Neighbor | Comp | Expand
PSNRT | 21.89 | 22.368 | 23.383 | 27.022 | 30.422 22.7704 16.295 | 12.944
B3;+SA SSIMT | 0.774 | 0.862 0.876 0.906 0.917 0.670 0.676 0.397
LPIPS] | 0.263 | 0.184 0.145 0.133 0.171 0.361 0.520 0.330
FID| | 21.939 | 17.512 | 13.492 | 12.395 | 16.592 23.288 | 38.529 | 31.771
Mean | Thick | Medium | Thin | N Lines | Neighbor | Comp | Expand
PSNR?T | 21.66 | 23.508 | 24.066 | 26.527 | 28.241 19.778 15.363 | 12.126
B+SA SSIMt | 0.774 | 0.856 0.866 0.891 0.876 0.498 0.702 0.488
LPIPS| | 0.289 | 0.199 0.166 0.147 0.179 0.371 0.577 0.383
FID| | 22.530 | 17.892 | 13.625 | 12.766 | 16.983 23.504 | 39.733 | 33.207
Mean | Thick | Medium | Thin | N Lines | Neighbor | Comp | Expand
PSNRT | 209 | 23.196 | 23.623 | 25.489 | 27.227 17.627 15.327 | 12.056
B SSIMt | 0.670 | 0.855 0.858 0.875 0.841 0.395 0.703 0.487
LPIPS| | 0.302 | 0.204 0.173 0.161 0.199 0.394 0.588 0.401
FID| | 22912 | 18.533 | 13.935 | 12.805 | 17.029 23.881 | 40.428 | 33.771

Quantitative results of our proposed model on all of the datasets for four datasets.

PSNR 1 SSIM ¢ LPIPS | FID |

Datasets mean std mean std mean std mean
FFHQ 25.06 | 8.669 | 0.838 | 0.147 | 0.239 | 0.173 | 21.345

Places 23.41 | 7.892 | 0.787 | 0.195 | 0.255 | 0.193 | 18.334

ImageNet | 23.804 | 8.781 | 0.776 | 0.221 | 0.249 | 0.213 | 18.854
WikiArt 23.142 | 7.305 | 0.759 | 0.204 | 0.276 | 0.185 | 26.395




