ろ快手

1. Overview

Background: Existing inpainting works:

- Hard to generalize well to multiple inpainting scenarios simultaneously.
- Require specific design for different types of masks.

Motivation:

• We address this problem by proposing a progressive learning scheme to an Semantic Aware Generative Adversarial Network (SA-Patch GAN).

Contributions:

- Progressive learning are applied to the network to make the overall training procedure more stable.
- We use semantic information from a pretrained deep network to enhanced semantic awareness of the discriminator in a Patch-GAN, which is a stabilization our training and improve our performance.
- Our method has achieved the 3rd place on the NTIRE 2022 Inpainting public leaderboard (the 3rd on both PSNR and SSIM) and significantly out- performs existing methods on benchmark datasets.

2. Methods

Total network

We progressively apply our backbone in different scales at different image size in a coarse-to-fine manner. We use Coarse-to-fine network architecture with gated conv as backbone. The network architecture of our improved model is shown in Figure.

Progressive learning Method

We use multi scales strategy in our method. Firstly, we set the number of stages as three in the $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{1}$ scales inpainting task. That is, in each stage, the model performs $\frac{1}{4}x \rightarrow \frac{1}{4}x$, $\frac{1}{2}x \rightarrow \frac{1}{2}x$, $1x \rightarrow 1x$ inpainting tasks sequentially. The training starts from stage one, which produces the $\frac{1}{4}x$ scale image from the first stage. After the end of first stage, we unsampled it to $\frac{1}{2}x$ scale and combined it with background pixels from $\frac{1}{2}x$ scale input as the input of stage 2. We froze stage 1 parameters when train stage 2. When we train stage3, the procedure is the same with stage 2. We also found that adding two extra scale $\frac{\sqrt{2}}{4}x$ and $\frac{\sqrt{2}}{2}x$ after stage 1 and stage 2 could improve model performance.

Semantic aware patch GAN (SA-Patch GAN)

In the original cGAN paper, a one-hot class label y is passed into the discriminator in addition to the image x to be classified as real or fake. The discriminator output is:

$$oldsymbol{P}\left(oldsymbol{x}^{*},oldsymbol{y}
ight)=oldsymbol{f}_{\phi}\left(\phi\left(oldsymbol{x}^{*}
ight)
ight)+\left\langle\phi\left(oldsymbol{x}^{*}
ight),oldsymbol{f}_{oldsymbol{y}}(oldsymbol{y})
ight
angle$$

 ϕ is a learned function mapping an image to a vector. f_{ϕ} is a learned fully-connected layer that maps that vector to a scalar, f_v is a learned fully-connected layer mapping y to a vector of the same size as the output of ϕ .

We change Eq.1 to add semantic condition:

 $\boldsymbol{D}(\boldsymbol{x}^*, \boldsymbol{M}, \boldsymbol{x}) = \boldsymbol{f}_{\phi}\left(\phi(\boldsymbol{x}^*, \boldsymbol{M})\right) + \langle \phi(\boldsymbol{x}^*, \boldsymbol{M}), \boldsymbol{f}_{\boldsymbol{C}}(\boldsymbol{C}(\boldsymbol{x})) \rangle$ (2) *M* is the input mask. The architecture of ϕ is consists of six stride convolutional layers, followed by a fully connected layer. The output dimensions of ϕ and f_C are both 256.

Coarse-to-Fine deep inpainting network

The network architecture of our improved model is shown in Figure. We use progressive learning based on Deepfillv2. We select Deepfillv2 because it achieves a good balance between efficiency and performance.

The model is based on gated convolutions which is used to learn a dynamic feature selection mechanism for each channel at each spatial location across all layers, significantly improve the color consistency and inpainting quality of free-form masks and inputs.

			Ctralzas		Testor	malation	Comple	tion
200 - C.		Strokes			Inter	Completion		
	Mean	Thick	Medium	Thin	Every N Lines	Nearest Neighbor	Completion	Expand
PSNR ↑	22.89	23.330	23.992	27.284	31.772	24.873	16.130	12.877
SSIM ↑	0.785	0.866	0.879	0.910	0.940	0.757	0.688	0.454
LPIPS \downarrow	0.248	0.158	0.134	0.112	0.147	0.347	0.522	0.313
$FID \downarrow$	20.314	15.213	12.341	10.214	14.906	21.924	37.484	30.098

Comparing our methods with SOTA out-painting tasks on Places dataset. We provide FID scores since FID correlates with

perceptual quality k		PSNR ↑		SSIM \uparrow		FID \downarrow				
		Method	Thin	Thick	Thin	Thick				
Method	FID \downarrow	EC [†] [17]	26.52	22.23	0.880	0.731	30.13			
Boundless [22]	35.02	GC [†] [31]	26.53	21.19	0.881	0.729	30.13			
NS-outpaint [29]	50.68	$MEDFE^{\dagger}$ [15]	26.47	22.27	0.877	0.717	31.40			
DeepFillv2 [30, 31]	56.14	PIC [†] [36]	26.10	21.50	0.865	0.680	33.47			
Image2StyleGAN [1]	25.36	ICT [†] [23]	26.6	23.32	0.880	0.724	25.42			
In&Out [3]	23.57	AOT-GAN [33]	26.03	22.62	0.890	0.804	5.47			
Very_Long [29]	13.71	BAT-Fill [†] [32]	26.47	21.74	0.879	0.704	22.16			
Ours	18.33	pluralistic [36]	26.47	21.74	0.879	0.704	25.42			
		Ours	27.28	23.33	0.910	0.866	18.33			

Image Multi-Inpainting via Progressive Generative Adversarial Networks

Jiayin Cai

Xin Tao Changlin Li Kuaishou Technology

{caijiayin, lichanglin, taoxin, daiyurong}@kuaishou.com

We list some examples of mask in 7 types and split these masks into three kinds of inpainting tasks: Inpainting, Interpolation, Out painting.

The network architecture of our improved model

Quantitative results of our proposed model on Partial of Places datasets with different mask types. Our Partial test set contains 1,000 \times 7 \times 4 images for seven type of mask on four dataset.

> Quantitative comparison of our model with SOAT conventional inpainting methods on Places2 validation images (1,000) with irregular masks. † denotes the results are copy from [32]

3. Experimental results

Yu-Wing Tai

Conventional inpainting Task for stroke masks on four datasets.

Quantitative results of our model on Interpolation task compared to Boundless[22] and CV2 Bicubic interpolation.

Out-painting Task for Completion and Expend masks on four datasets.

whole model

 B_{5s} +SA

 B_{3s} +SA

Interpolation-inpainting Task for Every N Line and Nearest Neighbor on four datasets.

Input image Result Mask Mask Input image Result Result

Ablation study on Partial of Places test set. The test set contains 1,000 images for each type of mask. B means our backbone. B_{3s} demonstrate 3 stage multi-scale progressive learning. and B_{5s} demonstrate 5 stage backbone (adding two extra scale $\frac{\sqrt{2}}{4}x$ and $\frac{\sqrt{2}}{2}x$ after stage 1 and stage 2). SA means add semantic aware Patch GAN discriminator in the model.

		Strokes		Interpolation		Completion		
	Mean	Thick	Medium	Thin	N Lines	Neighbor	Comp	Expand
PSNR ↑	22.89	23.330	23.992	27.284	31.772	24.873	16.130	12.877
SSIM ↑	0.785	0.866	0.879	0.910	0.940	0.757	0.688	0.454
LPIPS↓	0.248	0.158	0.134	0.112	0.147	0.347	0.522	0.313
FID↓	20.314	15.213	12.341	10.214	14.906	21.924	37.484	30.098
399 B.	Mean	Thick	Medium	Thin	N Lines	Neighbor	Comp	Expand
PSNR ↑	22.01	22.506	23.505	27.127	30.739	22.709	16.280	13.192
SSIM ↑	0.776	0.862	0.877	0.907	0.922	0.675	0.662	0.471
LPIPS↓	0.260	0.180	0.142	0.131	0.166	0.359	0.540	0.301
FID↓	21.613	17.201	13.251	12.005	16.211	23.014	38.129	31.482
74. W. 74.	Mean	Thick	Medium	Thin	N Lines	Neighbor	Comp	Expand
PSNR ↑	21.89	22.368	23.383	27.022	30.422	22.704	16.295	12.944
SSIM ↑	0.774	0.862	0.876	0.906	0.917	0.670	0.676	0.397
LPIPS↓	0.263	0.184	0.145	0.133	0.171	0.361	0.520	0.330
FID↓	21.939	17.512	13.492	12.395	16.592	23.288	38.529	31.771
292 Bar	Mean	Thick	Medium	Thin	N Lines	Neighbor	Comp	Expand
PSNR ↑	21.66	23.508	24.066	26.527	28.241	19.778	15.363	12.126
SSIM ↑	0.774	0.856	0.866	0.891	0.876	0.498	0.702	0.488
LPIPS↓	0.289	0.199	0.166	0.147	0.179	0.371	0.577	0.383
FID↓	22.530	17.892	13.625	12.766	16.983	23.504	39.733	33.207
	Mean	Thick	Medium	Thin	N Lines	Neighbor	Comp	Expand
PSNR ↑	20.9	23.196	23.623	25.489	27.227	17.627	15.327	12.056
SSIM↑	0.670	0.855	0.858	0.875	0.841	0.395	0.703	0.487
LPIPS↓	0.302	0.204	0.173	0.161	0.199	0.394	0.588	0.401
FID↓	22.912	18.533	13.935	12.805	17.029	23.881	40.428	33.771

Quantitative results of our proposed model on all of the datasets for four datasets.

	PSNR ↑		SSIM ↑		LPIP	FID \downarrow		
Datasets	mean	std	mean	std	mean	std	mean	
FFHQ	25.06	8.669	0.838	0.147	0.239	0.173	21.345	
Places	23.41	7.892	0.787	0.195	0.255	0.193	18.334	
nageNet	23.804	8.781	0.776	0.221	0.249	0.213	18.854	
VikiArt	23.142	7.305	0.759	0.204	0.276	0.185	26.395	