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Proposed Model
[

Strategies

Fusion Strategy

m We propose a fusion strategy for generating the relit image:
m Intrinsic image decomposition:

Tintrinsic-relit = A © S
m Direct relighting:
F(I) = Idirectreit
= The fused output:

Trelit = wlgiect-relit + (1 — w) intrinsic-relit
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FIGURE — Our proposed OIDDR-Net. The shading estimate is adjusted using the normals of the surfaces in the scene

provided by the normal extraction module.

1. For the implementation details please visit:
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https://github.com/yazdaniamir38/Depth-guided-Image-Relighting
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FIGURE — Our proposed AMIDR-Net. The multi-scale block helps the model systematically learn to upsample and
downsample the inputs according to the features it needs.
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Experimental Results
[

One-to-one Relighting

Team | Author || MPSt | SSIMt | LPIPS | | PSNR 1 || Run-time | Platform | GPU
AICSNTU-MBNet [ HaogiangYang [ 0.7663 | 0.6931 0.1605 | 19.1469 2.88s PyTorch Tesla V100
iPAL-RelightNet | auy200 0.7620 | 0.6874 | 0.1634 | 18.8358 0.53s PyTorch Titan XP
NTUAICS-ADNet | aics 0.7601 | 0.6799 | 0.1597 | 18.8639 2.76s PyTorch Tesla V100
VUE lifu 0.7600 | 0.6903 | 0.1702 | 19.8645 0.23s PyTorch P40
NTUAICS-VGG jimmy3505090 0.7551 0.6772 0.1670 18.2766 2.12s PyTorch Tesla V100
DeepBlueAl DeepBlueAl 0.7494 | 0.6879 0.1891 19.8784 0.17s PyTorch Tesla V100
usuitakumi usuitakumi 0.7229 | 0.6260 | 0.1801 16.8249 0.04s PyTorch Tesla V100
MCG-NKU NK_ZzZL 0.7147 | 0.6191 0.1896 19.0856 0.33s PyTorch RTX TITAN
alphaRelighting Ichia 0.7101 | 0.6084 | 0.1882 | 15.8591 0.04s PyTorch Tesla K80
Wit-Al-lab MDSWYZ 0.6966 | 0.6113 0.2181 17.5740 0.9s PyTorch RTX 2080Ti
Couger Al Sabarinathan 0.6475 | 0.5469 0.2518 18.2938 0.015s Tensorflow GTX 1070

TABLE — NTIRE 2021 Depth-Guided Image Relighting Challenge Track 1 (One-to-one relighting) results. The MPS is
used to determine the final ranking.
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Comparison with state of the art

Any-to-any Relighting

Input Guide Groundtruth SA-AE [1] DPR [2] AMIDR-Net

FIGURE — Comparing our AMIDR-Net with other methods on samples from VIDIT20 [3] dataset.
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