Physically Inspired Dense Fusion Networks for Relighting
Runner Up of NTIRE 2021 Depth-Guided Relighting Challenge

Amirsaeed Yazdani (amiryazdani@psu.edu)
Tiantong Guo (tiantong@ieee.org)
Vishal Monga (vmonga@engr.psu.edu)

Information Processing & Algorithm Laboratory
Pennsylvania State University

June 19 2021
Fusion Strategy

We propose a fusion strategy for generating the relit image:
Fusion Strategy

- We propose a fusion strategy for generating the relit image:
 - Intrinsic image decomposition:
 \[I_{\text{intrinsic-relit}} = \hat{A} \odot \hat{S} \]
Fusion Strategy

- We propose a fusion strategy for generating the relit image:
 - Intrinsic image decomposition:
 \[I_{\text{intrinsic-relit}} = \hat{A} \odot \hat{S} \]
 - Direct relighting:
 \[f(I) = I_{\text{direct-relit}} \]
We propose a fusion strategy for generating the relit image:

- Intrinsic image decomposition:
 \[I_{\text{intrinsic-relit}} = \hat{A} \odot \hat{S} \]

- Direct relighting:
 \[f(I) = I_{\text{direct-relit}} \]

- The fused output:
 \[\hat{I}_{\text{relit}} = wI_{\text{direct-relit}} + (1 - w)I_{\text{intrinsic-relit}} \]
One-to-one Intrinsic Decomposition Direct RelightNet \(^1\)

Figure – Our proposed OIDDR-Net. The shading estimate is adjusted using the normals of the surfaces in the scene provided by the normal extraction module.

1. For the implementation details please visit: github/Relighting

Amirsaeed Yazdani iPAL, Penn State Depth-Guided Image Relighting June 19 2021 3 / 9
Any-to-any Multiscale Intrinsic-Direct RelightNet

Figu re – Our proposed AMIDR-Net. The multi-scale block helps the model systematically learn to upsample and downsample the inputs according to the features it needs.
Loss Function

Training Loss

\[\mathcal{L} = \mathcal{L}_{total} + \lambda_1 \mathcal{L}_{IID} + \lambda_2 \mathcal{L}_{direct} + \lambda_3 \mathcal{L}_{SSIM} + \lambda_4 \mathcal{L}_{lighting} \]
Training Loss

\[
\mathcal{L} = \mathcal{L}_{total} + \lambda_1 \mathcal{L}_{IID} + \lambda_2 \mathcal{L}_{direct} + \lambda_3 \mathcal{L}_{SSIM} + \lambda_4 \mathcal{L}_{lighting}
\]

\[
\mathcal{L}_{total} = ||\hat{I}_{relit} - Y_{relit}||_2^2
\]

\[
\mathcal{L}_{IID} = ||\hat{A} \odot \hat{S} - Y_{relit}||_2^2 + ||\hat{A} - A||_2^2 + ||\hat{S} - S||_2^2
\]

\[
\mathcal{L}_{direct} = ||I_{direct-relit} - Y_{relit}||_2^2
\]

\[
\mathcal{L}_{SSIM} = 1 - SSIM(\hat{I}_{relit}, Y_{relit})
\]

\[
\mathcal{L}_{lighting} = ||g(\hat{I}_{relit}) - g(Y_{relit})||_2^2 - \sum_{i=1}^{8} Y_{dir-guide}^{i} \log(\hat{Y}_{dir}^{i}) - \sum_{j=1}^{5} Y_{color-guide}^{j} \log(\hat{Y}_{color}^{j})
\]
One-to-one Relighting

<table>
<thead>
<tr>
<th>Team</th>
<th>Author</th>
<th>MPS ↑</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
<th>PSNR ↑</th>
<th>Run-time</th>
<th>Platform</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICSNTU-MBNet</td>
<td>HaoqiangYang</td>
<td>0.7663</td>
<td>0.6931</td>
<td>0.1605</td>
<td>19.1469</td>
<td>2.88s</td>
<td>PyTorch</td>
<td>Tesla V100</td>
</tr>
<tr>
<td>iPAL-RelightNet</td>
<td>auy200</td>
<td>0.7620</td>
<td>0.6874</td>
<td>0.1634</td>
<td>18.8358</td>
<td>0.53s</td>
<td>PyTorch</td>
<td>Titan XP</td>
</tr>
<tr>
<td>NTUAICS-ADNet</td>
<td>aics</td>
<td>0.7601</td>
<td>0.6799</td>
<td>0.1597</td>
<td>18.8639</td>
<td>2.76s</td>
<td>PyTorch</td>
<td>Tesla V100</td>
</tr>
<tr>
<td>VUE</td>
<td>lifu</td>
<td>0.7600</td>
<td>0.6903</td>
<td>0.1702</td>
<td>19.8645</td>
<td>0.23s</td>
<td>PyTorch</td>
<td>P40</td>
</tr>
<tr>
<td>NTUAICS-VGG</td>
<td>jimmy3505090</td>
<td>0.7551</td>
<td>0.6772</td>
<td>0.1670</td>
<td>18.2766</td>
<td>2.12s</td>
<td>PyTorch</td>
<td>Tesla V100</td>
</tr>
<tr>
<td>DeepBlueAl</td>
<td>DeepBlueAI</td>
<td>0.7494</td>
<td>0.6879</td>
<td>0.1891</td>
<td>19.8784</td>
<td>0.17s</td>
<td>PyTorch</td>
<td>Tesla V100</td>
</tr>
<tr>
<td>usuitakumi</td>
<td>usuitakumi</td>
<td>0.7229</td>
<td>0.6260</td>
<td>0.1801</td>
<td>16.8249</td>
<td>0.04s</td>
<td>PyTorch</td>
<td>Tesla V100</td>
</tr>
<tr>
<td>MCG-NKU</td>
<td>NK_ZZL</td>
<td>0.7147</td>
<td>0.6191</td>
<td>0.1896</td>
<td>19.0856</td>
<td>0.33s</td>
<td>PyTorch</td>
<td>RTX TITAN</td>
</tr>
<tr>
<td>alphaRelighting</td>
<td>Ichia</td>
<td>0.7101</td>
<td>0.6084</td>
<td>0.1882</td>
<td>15.8591</td>
<td>0.04s</td>
<td>PyTorch</td>
<td>Tesla K80</td>
</tr>
<tr>
<td>Wit-AI-lab</td>
<td>MDSWYZ</td>
<td>0.6966</td>
<td>0.6113</td>
<td>0.2181</td>
<td>17.5740</td>
<td>0.9s</td>
<td>PyTorch</td>
<td>RTX 2080Ti</td>
</tr>
<tr>
<td>Cougar Al</td>
<td>Sabarinathan</td>
<td>0.6475</td>
<td>0.5469</td>
<td>0.2518</td>
<td>18.2938</td>
<td>0.015s</td>
<td>Tensorflow</td>
<td>GTX 1070</td>
</tr>
</tbody>
</table>

TABLE — NTIRE 2021 Depth-Guided Image Relighting Challenge Track 1 (One-to-one relighting) results. The MPS is used to determine the final ranking.
Any-to-any Relighting

Figure – Comparing our AMIDR-Net with other methods on samples from VIDIT’20 [3] dataset.
Thank You!

Physically Inspired Dense Fusion Networks for Relighting

http://signal.ee.psu.edu