

Efficient Space-time Video Super Resolution using Low-Resolution Flow and Mask Upsampling Saikat Dutta (IIT Madras); Nisarg A. Shah (IIT Jodhpur); Anurag Mittal (IIT Madras)

Overview

- In this paper, we have presented an efficient framework for Joint Video Super Resolution and Frame Interpolation.
- Unlike prior work, we have considered non-linear motion between LR frames explicitly through quadratic modeling to interpolate in LR frames.
- We have used a state-of-the-art Recurrent Neural Network to super-resolve the input LR frames.
- We have made our model computationally efficient by estimating intermediate HR flowmaps and blending masks using bilinear interpolation instead of directly estimating them in HR space.
- Estimated HR frames, coarse HR flowmaps and mask produces a coarse intermediate frame estimate.
- This coarse estimate is further refined by a refinement module.
- \succ In this work, we have considered 4x upscaling in spatial domain and 2x upscaling in temporal domain.
- Our model is parameter-efficient and performs better than current state-of-the-art models in REDS STSR Validation set.

Model Architecture

Qualitative Results

Input

STARnet

Zooming SloMo

Quantitative Results

Mathad	Even Frames		Odd Frames		Overall		
Ivietiiou	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	
STARnet [10]	28.43	0.7978	21.55	0.5925	25.03	0.6961	
Zooming Slomo [37]	28.95	0.8151	21.63	0.6010	25.33	0.7091	
Ours	28.56	0.8018	22.41	0.6148	25.51	0.7093	
Table 1. Quantitative comparison with other state-of-the-art models.							

Efficiency

Table 2. Runtime, Parameter and Memory usage consumption comparison with State-of-the-art methods.

References

Code and Models

https://github.com/saikatdutta/FMU_STSR

Ours

Ground Truth

Method	Runtime (s)	Parameters (M)	GPU Memory Usage (GB)
ARnet [10]	1.13	111.61	5.27
ΓVUN [17]	0.24	30.90	2.90
ing Slomo [37]	0.15	11.10	4.55
Ours	0.25	20.09	3.43

Isobe, Takashi, et al. "Video super-resolution with recurrent structure-detail network." European Conference on Computer Vision. Springer, Cham, 2020.

> Xu, Xiangyu, et al. "Quadratic video interpolation." Advances in Neural Information Processing Systems 32 (2019).

