

Leonhard Helminger¹

Motivation

- Recent methods proposed alternatives and approximations to the true image prior
- With normalizing flows, we have an approach for a tractable and exact log-likelihood computation
- The goal is, to learn a distribution of target high quality content to serve as a prior in the MAP formulation.

Contributions

- Our work is the first that uses normalizing flows to learn a prior for generic image restoration
- We take advantage of the bijective mapping learned by our model to express the MAP problem of image reconstruction in latent space
- We propose to regularize the base distribution space with new loss terms, which yield a better behavior during the MAP inference

Figure 1: Our approach is able to remove the degradation and produces visually more pleasing results.

Generic Image Restoration with Flow Based Priors

Michael Bernasconi¹ Abdelaziz Djelouah² Markus Gross^{1,2} Christopher Schroers² ¹ETH Zürich / ²DisneyResearch|Studios

Phase 1: Training the flow based prior **Phase 2**: Image restoration using the prior $\mathcal{L} = \mathcal{L}_{nll} + \beta_{ln} \mathcal{L}_{ln} + \beta_{ae} \mathcal{L}_{ae} + \beta_{in} \mathcal{L}_{in}$ $\mathbf{u}^{\star} = \operatorname{arg}$ optional where $\mathcal{L}_{nll} = -\log p_{\theta} (\mathbf{x} + \epsilon)$ with $\mathcal{L}_{ln} = ||T_{\theta} \left(T_{\theta}^{-1} \left(\mathbf{x} \right) + \xi \right) - \mathbf{x}||_{2}^{2}$ $\mathcal{L}_{in} = ||T_{\theta}^{-1}(\mathbf{x}) - T_{\theta}^{-1}(\mathbf{x} + \eta)||_2^2$

Figure 2: Results on DIV2K dataset. The proposed prior is used to restore images of arbitrary size.

$$\operatorname{gmin}_{\mathbf{u}}\left[\underbrace{-\log p\left(\hat{\mathbf{x}} \mid T_{\theta}\left(\mathbf{u}\right)\right)}_{\operatorname{data}} \underbrace{-\log p_{\theta}\left(T_{\theta}\left(\mathbf{u}\right)\right)}_{\operatorname{prior}}\right]$$

		DIP	Double-DIP	SRFlow 4x	SRFlow 8x	Ours
JPEG	$\mathrm{PSNR}\uparrow$	28.16	-	27.75	25.27	30.29
	$\mathrm{SSIM}\uparrow$	0.85	-	0.80	0.71	0.86
	$\mathrm{MSSSIM}\uparrow$	0.97	-	0.95	0.91	0.96
	$\mathrm{LPIPS}{\downarrow}$	0.17	-	0.25	0.31	0.23
Noise	$\mathrm{PSNR}\uparrow$	30.22	-	27.32	24.73	28.99
	$\mathrm{SSIM}\uparrow$	0.92	-	0.81	0.69	0.87
	$\mathrm{MSSSIM}\uparrow$	0.98	-	0.96	0.92	0.96
	$\mathrm{LPIPS}{\downarrow}$	0.07	-	0.23	0.34	0.21
Multi Degr.	$\mathrm{PSNR}\uparrow$	26.41	27.62	27.57	25.21	29.87
	$\mathrm{SSIM}\uparrow$	0.78	0.80	0.78	0.69	0.85
	$\mathrm{MSSSIM}\uparrow$	0.92	0.94	0.94	0.91	0.96
	$LPIPS\downarrow$	0.26	0.27	0.26	0.34	0.23

Table 1. Quantitative evaluation on DIV2K and comparison with state of the Art.