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Abstract

This paper reviews the NTIRE 2020 Challenge on Non-

Homogeneous Dehazing of images (restoration of rich de-

tails in hazy image). We focus on the proposed solutions and

their results evaluated on NH-Haze, a novel dataset con-

sisting of 55 pairs of real haze free and nonhomogeneous

hazy images recorded outdoor. NH-Haze is the first real-

istic nonhomogeneous haze dataset that provides ground

truth images. The nonhomogeneous haze has been pro-

duced using a professional haze generator that imitates the

real conditions of haze scenes. 168 participants registered

in the challenge and 27 teams competed in the final testing

phase. The proposed solutions gauge the state-of-the-art in

image dehazing.

1. Introduction

Haze is an atmospheric phenomena produced by small

floating particles which absorb and scatter the light from

its propagation direction. As a result, haze influences the

visibility of such scene as it generates loss of contrast of the

distant objects, selective attenuation of the light spectrum,

and additional noise. Restoring such images is important in

several outdoor computer vision applications such as visual
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surveillance and automatic driving assistance.

Image dehazing is a challenging ill-posed problem that

recently has drawn a significant attention in the com-

puter vision community [20, 53, 34, 54, 25, 3, 37, 9].

Most recently, an important number of CNN-based ap-

proaches [16, 49, 66, 38, 60] have been introduced in the

literature proving high competitiveness compared with the

non-learning techniques. The image dehazing research is

aligned with the advances from related tasks such as im-

age super-resolution [56, 57, 15, 30, 17, 23, 41], denois-

ing [2, 24]or enhancement [29].

Despite this growing interest, the field still lacks stan-

dardized benchmarks to allow for evaluating objectively

and quantitatively the performance of the existing dehaz-

ing techniques. Basically, a major issue preventing further

developments is related to the impossibility to reliably as-

sess the dehazing performance of a given algorithm, due to

the absence of reference haze-free images (ground-truth).

A key problem in collecting pairs of hazy and haze-free

ground-truth images lies in the need to capture both images

with identical scene illumination.

First image dehazing benchmarks with groundtruth con-

sidered synthesized hazy images, employing the optical

model and known depth to synthesize the haze effect.

For instance, FRIDA [55] dataset, designed for Advanced

Driver Assistance Systems (ADAS), is a synthetic image

database with 66 computer graphics generated roads scenes.

Another representative synthetic dehazing dataset is D-

HAZY [7] that contains 1400+ real images and correspond-

ing depth maps used to synthesize hazy scenes based on

Koschmieder’s light propagation model [33].

An important step forward in benchmarking the dehaz-
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ing technique is represented by the first challenge for sin-

gle image dehazing that has been organized by NTIRE

2018 [4]. The NTIRE 2018 challenge was based on two

realistic dehazing datasets: I-HAZE [6] and O-HAZE [10].

The I-HAZE includes 35 hazy images (with haze generated

in a controlled indoor environment) and their correspond-

ing ground truth (haze-free) images of the same scene while

O-HAZE dataset includes 45 outdoor hazy images and cor-

responding ground truth (haze-free) images. Both datasets

allow for full-reference quality assessment of the dehazing

results. A second dehazing challenge has been organised

by NTIRE 2019 [13] based on DenseHaze [5], a more chal-

lenging dehazing dataset that considers dense hazy scenes

with corresponding ground truth images.

The NTIRE 2020 challenge represents a step forward in

benchmarking single image dehazing. It uses a novel de-

hazing dataset, NH-Haze [11] , that consists from 55 hazy

images with haze generated in outdoor environments, and

their corresponding ground truth (haze-free) images of the

same scene. NH-Haze contains real outdoor scenes with

non-homogeneous haze generated using a professional haze

machine that imitates the real haze conditions. To the best

of our knowledge this is the first dehazing dataset with non-

homogeneous hazy scenes.

The evaluation was performed objectively by comparing

the restored hazy images with the ground truth images.

This challenge is one of the NTIRE 2020 associated

challenges on: deblurring [44], nonhomogeneous dehaz-

ing [12], perceptual extreme super-resolution [67], video

quality mapping [21], real image denoising [1], real-world

super-resolution [40], spectral reconstruction from RGB

image [14] and demoireing [65].

2. The Challenge

The objectives of the NTIRE 2020 challenge on sin-

gle image dehazing are: (i) to gauge and push the state-

of-the-art in image dehazing; (ii) to compare different so-

lutions; and (iii) to promote the first non-homogeneous

dehazing dataset (NH-Haze [11]) that contains real non-

homogeneous haze and ground truth haze-free images.

2.1. NH­Haze Dataset

NH-Haze [12] dataset contains 55 various outdoor

scenes captured in presence or absence of haze. NH-Haze

is the first dehazing dataset that contains nonhomogeneous

hazy scenes. Our dataset allows to investigate the contribu-

tion of the haze over the scene visibility by analyzing the

scene objects radiance starting from the camera proximity

to a maximum distance of 20-30m.

The recording outdoor conditions had to be similar to the

ones encountered in hazy days and therefore, the recording

https://data.vision.ee.ethz.ch/cvl/ntire20/

/nh-haze/

period has been spread over more than two months during

the autumn season. Basically, all outdoor scenes have been

recorded during cloudy days, in the morning or in the sun-

set. We also had to deal with the wind speed. In order to

limit fast spreading of the haze in the scene, the wind during

recording had to be below 2-3 km/h. The absence of wind

was the parameter that was the hardest to meet, and explain

the long interval of recording the dataset.

The hardware used to record the scenes was composed

of a tripod and a Sony A5000 camera that was remotely

controlled (Sony RM-VPR1). We acquired JPG and ARW

(RAW) 5456×3632 images, with 24 bit depth. Each scene

acquisition has started with a manual adjustment of the cam-

era settings. The shutter-speed (exposure-time), the aper-

ture (F-stop), the ISO and white-balance parameters have

been set at the same level when capturing the haze-free and

hazy scene.

To set the camera parameters (aperture-exposure-ISO),

we used an external exponometer (Sekonic) while for set-

ting the white-balance, we used the middle gray card (18%

gray) of the color checker. For this step we changed the

camera white-balance mode in manual mode and placed the

reference grey-card in the front of it.

To introduce haze in the outdoor scenes we have used

two professional haze machines (LSM1500 PRO 1500 W),

which generate vapor particles with diameter size (typically

1 - 10 microns) similar to the particles of the atmospheric

haze. The haze machines use cast or platen type aluminum

heat exchangers to induce liquid evaporation. We have cho-

sen special (haze) liquid with higher density in order to sim-

ulate the effect occurring with water haze over larger dis-

tances than the investigated 20-30 meters.

The generation of haze took approximately 2-3 minutes.

After starting to generate haze, we used a fan to spread the

haze in the scene in order to reach a nonuniform distribution

of the haze in a rage of 20-30 m in front of the camera.

Moreover, in each outdoor recorded scene we have

placed a color checker (Macbeth color checker) to allow for

post-processing. We use a classical Macbeth color checker

with the size 11 by 8.25 inches with 24 squares of painted

samples (4×6 grid).

2.2. NonHomogeneous Haze Challenge

For the NTIRE 2020 dehazing challenge we created a

Codalab competition. To access the data and submit their

dehazed image results to the CodaLab evaluation server

each participant had to register.

Challenge phases: (1) Development (training) phase:

the participants got train data (hazy and haze-free images)

(45 sets of images); (2) Validation phase: the participants

received 5 additional sets of images and had the opportu-

nity to test their solutions on the hazy validation images and

to receive immediate feedback by uploading their results to



the server. A validation leader-board is available; (3) Fi-

nal evaluation (test) phase: the participants got the hazy test

images (5 additional set of images) and had to submit both

their dehazed images and a description of their methods be-

fore the challenge deadline. One week later the final results

were made available to the participants.

Evaluation protocol: The Peak Signal-to-Noise Ratio

(PSNR) measured in decibel (dB) and the Structural Simi-

larity index (SSIM) computed between an image result and

the ground truth are the quantitative measures. The higher

the score is, the better the restoration fidelity to the ground

truth image is. Additionally we used the perceptual mea-

sures LPIPS [68] and Perceptual Index (PI) [15], recently

used for assessing the quality of the super-resolved images.

The final ranking is based on a user study and Mean Opin-

ion Scores (MOS).

3. Challenge Results

From 168 registered participants, 27 teams were ranked

in the final phase. These teams submitted results, codes,

and factsheets. The fidelity and perceptual quality quantita-

tive results and the final perceptual MOS-based ranking of

the challenge are reported in Table 1. Note that for com-

pleteness we report also results of some other submissions

that were not ranked due to various reasons such as incom-

plete submissions, intermediary results, etc. Figure 1 allow

a visual inspection of the dehazing results obtained by a se-

lection of methods.

Figure 1: Comparative results. The first row displays 3 in-

put hazy images of the NH-HAZE dataset. The second row

shows the results yielded by the ECNU-Trident team (win-

ner of NTIRE 2020 dehazing challenge). The bottom row

displays the results yielded by the dehaze-sneaker team (3rd

in the NTIRE 2020 dehazing challenge).

From Table 1 and Figure 1 we can make the follow-

ing observations. First, ECNU-Trident is the winner of the

challenge, ECNU KT and dehaze sneaker win the second

and third place, respectively. Second, among the top perc-

tual quality solutions, dehaze sneaker and Spider achieve a

good trade-off between fidelity and perceptual quality and

runtime requirements. Third, Spider achieves the best fi-

delity in terms of PSNR, however it fails to provide also the

best perceptual quality. Fourth, PSNR and SSIM were bet-

ter indicators of the perceptual quality of the results, than

the LPIPS (full reference) [69] and PI (no reference) [15]

perceptual quality assessment measures. The top-5 PSNR

scored teams are also in the top-5 perceptual rank, while

the team achieving the best LPIPS score was ranked 10th

by the MOS, and the best PI score was produced by the

team credited with the 8th place. Fifth, even for the best

solutions it is easy to distinguish the ground-truth haze-free

images from the dehazed ones.

Architectures, losses and main ideas Many of the pro-

posed solutions employ and are inspired from architectures

such as U-Net [50], ResNet [26], DenseNet [28] and Incep-

tion [52]. The winner ECNU-Trident combines three dif-

ferent sub-networks. ECNU-KT proposes a dual network

made from a teacher and a dehazing pair of networks. We

note also that top ranked teams such as dehaze sneaker and

Spider use self-designed Haze-Aware Representation Dis-

tillation (HARD) modules. L1 is the most employed loss for

training the deep learned dehazing networks, however com-

binations are also found. ECNU-Trident employs L1, FFT,

BReLU losses. ECNU-KT employs L1, Laplacian (Lap),

and Knowledge Transfer (KT) losses. dehaze sneaker and

Spider rely and L1 and L2 losses, while Neuro avengers

uses a hybrid loss.

Ensembles Many teams, including the winners, employed

commonly used model-ensemble or self-ensemble [58] to

improve the performance of their solutions.

Train data Most of the top ranked teams used the provided

NH-Haze train data and augmented the training data with

data from DenseHaze [5] and O-Haze [10], datasets provid-

ing pairs of real hazy and haze-free images. Some teams

use pretrained models on other datasets/tasks.

Deep learning platforms The vast majority of the pro-

posed solutions use PyTorch platform, while a couple use

other such as TensorFlow.

Runtime The self-reported runtimes per processed image

range from 0.01s (Neuro-avengers) on a Nvidia GTX 1080

GPU card to 600s (RETINA) on a CPU.

Conclusions By analyzing the challenge methods and their

results we can draw several conclusions. (i) The proposed

solutions have a degree of novelty and go beyond the pub-

lished state-of-the-art methods. (ii) In general the best per-

ceptual quality solutions performed the best also for both

PSNR and SSIM fidelity measures. (iii) The evaluation



Participant Results Solution details
Fidelity Perceptual quality Runtime GPU/ extra deep learning loss

Team User PSNR↑ SSIM↑ LPIPS↓ PI↓ MOS↓ img.[s] CPU data ens. framework

Top perceptual quality solutions
ECNU-Trident liujing1995 21.41(3) 0.71(1) 0.267(1) 3.063 1 8×0.64 1080ti DenseHaze 8× PyTorch L1,FFT,BReLU

ECNU-KT asakusa/glassy 20.85(4) 0.69(2) 0.285(2) 3.295 2 0.30 2080ti DenseHaze PyTorch L1, Lap, KT

dehaze sneaker dehazing sneaker 21.60(2) 0.67 0.363 3.712 3 0.21 v100 DenseHaze PyTorch L1,L2

Spider spider 21.91(1) 0.69(2) 0.361 3.700 4 0.22 v100 DenseHaze PyTorch L1,L2

NTU-Dehazing peter980421 20.11(5) 0.66 0.351 3.973 5 8.00 1080ti DenseHaze,O-Haze PyTorch

VICLAB-DoNET DoNET 19.70 0.68(3) 0.301 2.985 6 8×0.95 Titan XP DenseHaze,O-Haze 8× PyTorch L1

iPAL-NonLocal krm 20.10 0.69(2) 0.330 3.278 7 2.06 Titan XP DenseHaze,O-Haze PyTorch L1

Team JJ pushthebell 19.49 0.66 0.311 2.824(2) 8 2.38 1070 n/a PyTorch L1

VIP UNIST Eun-Sung 18.77 0.54 0.525 4.374 9 0.04 n/a n/a

iPAL-EDN venkat2 19.22 0.66 0.266(1) 3.267 10 n/a Titan XP DenseHaze,O-Haze PyTorch L1

Medium perceptual quality solutions
NTUEE LINLAB NTUEE LINLAB 19.25 0.60 0.426 5.061 12 12.88 v100 n/a PyTorch

NTUST merg aes 17.74 0.63 0.322 2.899 12 1.10 v100 n/a PyTorch

iPAL-EDN wechat 18.58 0.63 0.303 3.323 12 0.08 Titan XP DenseHaze,O-Haze PyTorch L1

SIAT weilan 17.95 0.63 0.332 3.046 12 0.03 1080ti n/a

HRDN xiqi 18.51 0.68(3) 0.308 2.988 12 13.00 n/a n/a PyTorch

iPAL-EDN yu.2359 19.76 0.67 0.289(3) 3.535 12 0.09 Titan XP DenseHaze,O-Haze PyTorch L1

Low perceptual quality solutions
Neptune neptuneai 17.77 0.62 0.407 3.413 14 2.80 n/a n/a PyTorch

sinashish sinashish 17.11 0.62 0.357 3.141 14 11.30 n/a n/a

Neuro avengers souryadipta 18.24 0.65 0.329 3.051 14 0.01 1080 no PyTorch Hybrid Loss

NITREXZ xuanzhao 18.70 0.64 0.328 3.114 14 10.43 1080ti n/a PyTorch

Lowest perceptual quality solutions
IIT ISM ayu 22 15.29 0.57 0.457 4.451 16 0.05 n/a n/a

AISAIL bouyang 18.67 0.64 0.303 3.211 16 1.64 TitanXP n/a TensorFlow

ICAIS Dehaze chongya 16.87 0.58 0.428 2.959 16 v100 n/a n/a PyTorch

RETINA de20ce 12.80 0.41 0.534 3.097 16 600.00 n/a n/a

CVML specialre 17.88 0.57 0.378 2.855(3) 16 0.06 n/a n/a

FAU Harbour Branch destrada2013 18.67 0.64 0.303 3.211 16 13.21 n/a n/a

hazefreeworld Navaneeth R 15.88 0.38 0.766 10.676 16 0.95 Titan V O&I-Haze,HazeRD,DHazy PyTorch Hybrid Loss

no processing baseline 11.33 0.42 0.582 2.609(1) 20

Table 1: NTIRE 2020 NonHomogeneous Dehazing Challenge preliminary results in terms of PSNR, SSIM, LPIPS [68],

PI [15] and Mean Opinion Score (MOS), on the NH-Haze test data.

based on the perceptual measures (LPIPS and PI) is ques-

tionable since these measures were not tailored for hazy

scenes.

4. Challenge Methods and Teams

4.1. ECNU­Trident

ECNU-Trident team proposed a Trident Dehazing Net-

work (TDN) [36] to directly learn a mapping from the in-

put real world nonhomogeneous hazy image to the hazy-

free clear image. As shown in Figure 2, TDN consists of

three sub-nets, the Encoder-Decoder sub-Net (EDN), the

Details Refinement sub-Net (DRN), and the Haze Density

Map Generation sub-Net (HDMGN), each of which is used

for a specific purpose: EDN reconstructs the coarse features

of hazy-free images, DRN complements the high frequency

details of the hazy free image features, and HDMGN helps

obtaining the density of haze in the different region of the

input hazy image. The deformable [70] convolution block

gets the final clear output from the concatenated feature

maps of three sub-nets.

DPN92 pretrained in ImageNet1K is as the backbone

of EDN’s encoder part. The decoder is composed of five

Deformable Upsampling Blocks (DUB), as shown in Fig-

ure 1 (bottom right). The input feature is first fed into a

3×3 deformable convolution block, and then concatenated

with the output features. The concatenated features are fed

into an 1×1 deformable convolution block and an nearest-

upsampling 2x layer to get the upsampled features as the

input features of the next DUB. EDN adds skip connections

from the output of the first downsampling block in layer 2

and that in layer 3 to the input of DUB 2, 3 by concatenat-

ing (cat) the feature maps, respectively. EDN use trainable

instance normalization [59] for skip connections.

As shown in Figure 3, HDMGN is a U-Net architecture

proposed in pix2pix [31] network to achieve haze density

map generation. Different with U-Net in pix2pix network,

HDMGN adds a tail 3×3 convolutional layer to refine the

output. Due to the size division requirement, there are only

6 downsampling and upsampling operators in the U-Net,

and the input size should be divisible by 64. As shown in

Figure 2, the greener the region in the visualization haze

density map is, the more haze there is.

DRN does the nonlinear feature mapping on down-

sampled 4×factor. Inverse Pixel Shuffle layer is used to

change the feature maps from spatial to depth (downsam-

pling/desubpixel), and Pixel Shuffle layer [51] is used to

change the feature maps from depth to spatial (upsam-

pling/subpixel). As shown in Figure 2, three Wide Acti-

vation Blocks (WAB) provide the non-linear feature map-
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Figure 2: The architecture of the proposed Trident Dehazing Network (TDN), the Details Refinement sub-Net (DRN) and

the Encoder-Decoder sub-Net (EDN). ⊕ represents tensor addition and ⊗ represents tensor multiplication respectively. TDN

consists of three sub-nets: EDN, DRN and HDMGN. The haze density maps and intermediate feature maps output by three

sub-nets are then concatenated and fed into the tail deformable [70] convolution block to get the clear output.

ping on 4× downsampled factor. In the WAB, there are

two 3 ×3 convolutional layers (followed by batch normal-

ization layer) and a wide activation layer proposed in [63].

The channel expand factor of WAB is 4. Motivated by [61],

ECNU-Trident uses residual scaling, i.e., scaling down the

residuals by multiplying a constant between 0 and 1 before

adding them to the main path, to prevent training-instability.

4.2. ECNU­KT

The ECNU-KT team proposed a knowledge transfer

method [62] that utilizes abundant clear images to train a

teacher network which can learn strong and robust prior.

It supervises the intermediate features and uses the feature

similarity to encourage the dehazing network imitate the

teacher network. The prior knowledge are transferred to the

dehazing network by intermediate feature map. The method

is based on a dual network that consists of the teacher net-

work and the dehazing network, as shown in Figure 4. The

architectures of networks are identical and both are based

on encoder-decoder structure. In addition, the method uses

a pre-trained Res2Net [22] without FC layer and only down-

sample 16x as encoder to extract detail information of hazy

images, and add skip connection to preserve information.

Moreover, in order to process nonhomogeneous hazy im-

ages, inspired by [47], the method uses the feature attention

module (FAM) that combines channel attention with pixel

attention to let network pay more attention to effective in-

formation such as texture, color and thick haze region. Fi-
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Map Generation sub-Net. “TConv” is the abbreviation of

“Transpose Convolution”.

nally, the method has an enhancing module (EM) to refine

results inspired by [48].

The teacher network is trained first, followed by the dehaz-

ing network.

4.3. dehaze sneaker

The proposed framework is illustrated in Figure 5. The

main framework acts like an encoder-decoder. In the center

of framework, DehazeNet is proposed to provide haze-free

information to final results.

As illustrated in Fig. 5, the DehazeNet consists of three

layers from coarse to fine: the first (coarsest) layer involving

five Haze-Aware Representation Distillation (HARD) mod-

ules, the second (medium) with five HARDs, and the third

(finest) with seven HARDs. Given an input hazy image X
and its target haze-free image Y , let xn

m and ynm denote the

input and output of the n-th HARD in the m-th layer.

The DehazeNet at each scale starts from the finest

scale(1/4) and sequentially passes the extracted features up

to the coarsest (1/16) scale. Then the information will be

sent back to finest scale(1/4) as haze-free information.

The HARD Module contains two branches, as shown in

Fig. 6. Because haze in the real world is always in an irreg-

ular pattern, the attention map is proposed to combine atmo-

spheric light and spatial information together selectively. In

this method, we calculate the final result by mathemati-

cal formulation proposed by [42].

4.4. Spider

The proposed framework is illustrated in Figure 5. The

main framework acts like an encoder-decoder. In the center

of framework, DehazeNet is proposed to provide haze-free

information to final results.

As illustrated in Fig. 7, the DehazeNet consists of three

layers from coarse to fine: the first (coarsest) layer involving

five Haze-Aware Representation Distillation (HARD) mod-

ules, the second (medium) with five HARDs, and the third

(finest) with seven HARDs. Given an input hazy image X

and its target haze-free image Y , let xn
m and ynm denote the

input and output of the n-th HARD in the m-th layer.

The DehazeNet at each scale starts from the finest

scale(1/4) and sequentially passes the extracted features up

to the coarsest (1/16) scale. Then the information will be

sent back to finest scale(1/4) as haze-free information.

The HARD Module contains two branches, as shown in

Fig. 6. Because haze in the real world is always in an irreg-

ular pattern, the attention map is proposed to combine atmo-

spheric light and spatial information together selectively. In

this method, we output final results directly.

4.5. NTU Dehazing

The team members proposed a customized UNet[50], us-

ing the residual network[26] and the Inception module[52].

Each convolutional layer in the model is followed by in-

stance normalization and LeakyReLU activation with nega-

tive slope as 0.2, except for the last layer of the encoder and

the last two layers of the decoder, where the convolutional

layers are followed by only activation function. The input

and output sizes of the network are both 1024×1024(High-

Resolution). Because of the input and output size, we can

get better quality output and avoid distortion caused by

downsampling (see Figure 8).

4.6. VICLAB­DoNET

The authors propose the 2-stage coarse-to-fine frame-

work to remove non-homogeneous haze effectively. This

framework consists of coarse network which removes over-

all haze and fine network which reconstructs colors and de-

tails from output of coarse network. The method which uses

a large size of kernel and increases the depth of network is

able to enlarge the receptive field, but it causes numerous

computational complexity. In other ways, the size of re-

ceptive field can be increased by down-sampling the input

image through the network. However, if the down-sampled

input image is passed through the network and then up-

sampled again to acquire the output image without any post-

processing, there exists a risk that the output image may

be blurry. To solve this problem, the 2-stage coarse-to-fine

framework was used. By using down-sampled hazy images

as input, non-homogeneous haze can be easily included in

receptive field of coarse network, so it effectively removes

overall haze. The original hazy image is concatenated with

up-sampled output of coarse network, then it use it as input

to the fine network. Hence, the fine network recognizes the

hazy parts and restores the colors and details. The detailed

structure of the entire framework is shown in Figure 9.

4.7. iPAL­NonLocal

The method is based on two proposed models following

similar ideology [43], the ‘AtJw’ and the ‘AtJwD’ models.

As illustrated in Fig. 10, both models have one encoder and



Figure 4: Overview of the KTDN architecture.

four decoders. They share the same architecture in the en-

coder and three of the decoders but have different architec-

ture in the left decoder — J-Decoder.

The encoders in both models include three pre-trained

dense blocks borrowed from a DenseNet-121 [27], which

is proposed initially for classification problems. During the

training,in the initial phase, the parameters of the encoder

were frozen, and the parameters of decoders were trained

with large training rate. After a certain number of epochs,

the parameters of that encoder were optimized by training

the whole network together with small learning rate. The

intuition behind it is to allow decoders to gain some advan-

tage of the pre-trained dense blocks in the beginning since

they are initialized randomly unlike the pre-trained encoder.

The decoders in ‘AtJw’ and ‘AtJwD’ models have similar

structures except the J-decoders. The first two decoders t-
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Figure 5: Overview of the framework introduced by de-

haze sneaker team. It contains one encode-decoder frame-

work for full scale images processing, while DehazeNet is
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4
scale images to provide haze-free in-

formation to framework. In the bottom are shows the details

for DehazeNet. 1

4
scale images are feed into the DehazeNet.
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Figure 6: Haze-Aware Representation Distillation

(HARD) Module. HARD is composed of two branches.

The second branch is used to learn spatial information γg ,

βg and global atmospheric light information γl, βl, then

feed them into the first branch to form intermediate results

y′. After channel attention, the final result of HARD is pro-

duced.

decoder and A-decoder are responsible for recovering the

haze-free image using the dehazing mathematical model.

J-decoder is responsible for retrieving the haze free im-

age directly from the input hazy image. Unlike the dehazed

image JAt, Jdirect is generated directly which enables the

network to hallucinate regions with very dense haze. Thus

for regions where the value of A is high and the value of

t is low, Jdirect is expected to perform better than the noisy

output of A+t-decoders. However, in regions with light-to-

no haze, JAt will perform better as the direct output lacks

sharpness and details. The output of w-Decoder, a spatially

varying weight map, in testing confirms that conclusion.
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Figure 7: Overview of the method proposed by Spider team.

The upper is the overview for our proposed methods. It con-

tains one encode-decoder framework for full scale images

processing, while DehazeNet is proposed to handle 1

4
scale

images to provide haze-free information to framework. The

lower one shows details for DehazeNet. 1

4
scale images are

feed into the DehazeNet.

Figure 8: Overview of the method introduced by NTU De-

hazing team.

Figure 9: Diagram of the proposed coarse-to-fine frame-

work. The coarse network removes the overall haze, and

the fine network reconstructs the colors and details of im-

age. Best viewed in color.
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4.8. Team JJ

The authors propose a deep UNet-based model which

consists of densenet blocks. For each up/down sampling

phase, the feature attention block was added in order to

sufficiently utilize an important part of the feature map

between each up/down blocks. Basically,a fancy bottle-

neck block was used to compose each densenet block and

residual block, which split feature map channels to 4 part

and apply convolution differently for each parts so that

we consider multi-scale-wise perspective. The proposed

model consists of two main parts, encoder and decoder.

Between two parts, there is skip-connection by element-

wise summation for two features with same size of feature

map. Furthermore, we add residual block between encoder

and decoder so that make up the output of encoder to en-

hance overall performance. Before put images into network

model,original image size was decreased by a factor of 1/4

size and the corresponding output image size was increased

by factor of 4.The overall architecture is depicted in Figure

11.

4.9. iPAL­EDN

The team proposes 3 models:‘ EDN-3J’, ‘EDN-AT’ and

‘EDU’ to address the issue of non-homogeneous haze[64].

First, the authors propose a DenseNet based single-

Figure 11: Diagram of the model introduced by Team JJ.

encoder four-decoders structure denoted as EDN-3J,

wherein among the four decoders, three of them output

estimates of dehazed images (J1, J2, J3) that are then

weighted and combined via weight maps learned by the

fourth decoder. In the second model called EDN-AT,

the single-encoder four-decoders structure is maintained

while three decoders are transformed to jointly estimate

two physical inverse haze models that share a common

transmission map t with two distinct ambient light maps

(A1,A2). The two inverse haze models are then weighted

and combined for the final dehazed image. To endow two

sub-models flexibility and to induce capability of modeling



non-homogeneous haze, attention masks are applied to

ambient lights. Both the weight maps and attention maps

are generated from the fourth decoder. Finally, in contrast

to the above two ensemble models, an encoder-decoder-

U-net structure called EDN-EDU is proposed, which is a

sequential hierarchical ensemble of two different dehazing

networks with different modeling capacities.

1-M
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Hazy Image
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Figure 12: Overview of the method proposed by iPAL-

EDN team. In EDN-AT model, ambient light maps A1,A2,

transmission map t are estimated by decoder.A1, de-

coder.A2 and decoder.T respectively. A1,A2 are multiplied

by attention maps m and 1−m. Final output is a weighted

combination of two sub-models’ outputs.

4.10. NTUEE LINLAB

The method is based on a encoder-decoder generator

model with a multi-scale kernel encoder in the front (size

is 3, 5, and 7). It is trained with part of the densenet-161.

Next, the authors used BicycleGAN to enhance the gener-

ator. The hazy image and the difference of the hazy image

and ground truth are used as the input when training the

cVAE-GAN Encoder.

4.11. NTUST­merg

The proposed method is based on the At−DH Network

as the backbone network. The authors used use DenseNet as

the pretrained model in the encoder network. On the other

hand, they employed the similar structure of the DenseNet

with additional residual block in the decoder network. They

used two decoders to estimate A (atmosphere light) and

t(transmission map). Moreover, L2 loss and perceptual loss

were used as loss functions. In the loss term, they both only

calculate the estimated haze-free image and ground truth

loss.

4.12. SIAT

The proposed method is a fully end-to-end algorithm for

image dehazing (see Figure 13). The authors developed

a novel Fusion-discriminator which can integrate the fre-

quency information as additional priors and constraints into

the dehazing network.

Figure 13: Architecture of the method introduced by SIAT

team.

4.13. neptuneai

The neptuneai team used a GlobalNet and LocalNet to

generate dehazing results separately. Then the outputs of

these two networks are refined by a RefineNet to get the

final clear image. The GlobalNet is inspired by the AOD-

Net. The LocalNet has a encoder and two decoders, one for

the transmission map and one for the ambient light. When

training the network, a loss for each output of these three

networks was computed. Then, the weighted sum the losses

was computed to get the final loss. The loss weights are set

to [0.1, 0.1, 1.0]. The architecture of the proposed model is

shown in Figure 14.

4.14. Neuro­avengers

The proposed network[18] has 3 hierarchies (see Fig-

ure 15). Number of patches used are 1, 2 and 4, respectively,

Figure 14: The architecture of the proposed model of the

neptuneai team



Figure 15: The architecture of the proposed model of the

Neuro-avengers team

from top to bottom. In each hierarchy, there is a encoder-

decoder pair, that works on individual patches separately.In

all levels, encoder input is the hazy frame. Decoder output

of lower level is added to Encoder input to the upper level.

In addition to this, there are residual connections between

consecutive levels. Main goal of our model is to aggregate

features multiple image patches from different spatial sec-

tion of the image for better performance. The number of

parameters of the proposed encoder-decoder architecture is

decreased due to the residual links in the proposed model,

fact that induces a fast dehazing inference.

4.15. NITREXZ

The proposed model contains a standard generative ad-

versarial network. The authors used a similar structure of

generator introduced in [48].

4.16. AISAIL

The core of the proposed solution is built upon the De-

BlurGAN, a GAN implementation that is targeting motion

blur reduction [35]. One key innovation in this technique

is the introduction of Correntropy [39] based loss function.

This loss function was initially introduced to mitigate the

VGG related artifacts in deblurGAN. However, this loss

function has shown to be effective against non-Gaussian

noise. In the proposed technique, the heterogeneous haze is

modeled as a type of non-Gaussian noise. This network is

hence referred to as DeBlurGAN-C. The solution includes

two steps. In the pre-processing step, initial haze reduction

filter was applied to the raw images (both training images

and test images). This filter is based on dark channel dehaz-

ing technique. However, the airlight estimation in Ancuti et

al. [8] was adopted to account for the non-uniform airlight

estimation. For transmission light estimation, the technique

in [45] was adopted. The pre-processed image was then first

used to train the DeBlurGAN-C network. The input train-

ing data consists of patches of 256×256. These patches

were generated by both splitting the original images into

Figure 16: The architecture of the proposed model of the

AISAIL team

the patch size as well as splitting downscaled input images

into the patch size. Additionally, scaling factors of 1, 2 and

4 were employed. For testing, the input images are also

first passing through the pre-processing and then processed

by the trained DeblurGAN-C model to produce the restored

images.

4.17. ICAIS dehaze

This approach uses a generative adversarial network with

the similar structure as CycleGAN. An encoder-decoder ar-

chitecture with skip connections is introduced in the gen-

erator (see Figure 17). Multiple residual blocks are used

in both the encoder and the decoder. The output of the

discriminator is downsampled to three scales before calcu-

lating the discriminator loss to reconstruct the multi-scale

features. GAN loss, perceptual loss and L1 loss are used

during the training process. The paired image similarity is

ensured by the losses on both sides, i.e., the loss for hazy

transformed to clean and clean to hazy.

Input

64 128 256 Res256 128 128

...

3

Output

ResBlock Conv Concatenate

Figure 17: Overall architecture for the encoder-decoder ar-

chitecture used in the method of ICAIS dehaze team.

4.18. RETINA

This approach, named spatio-temporal retinex-inspired

by an averaging of stochastic samples (STRASS) , is based



on the spatio-temporal envelope retinex-inspired with a

stochastic sampling framework (STRESS) [32] and also

from the random spray retinex (RSR) [46]. In this work,

the authors used the idea of the relation developed in [19]

replacing the envelope structure of the samples used in [32]

by an average of these samples. Due to the local properties

of the algorithm, this modified computation in the frame-

work also impacted regions of the image far from the cam-

era.

4.19. hazefreeworld

This method utilizes a convolutional neural network ar-

chitecture based on the skeleton of a U-Net. The proposed

network uses the first 8 layers from a pretrained RESNET-

18 network (see Figure 18) for efficient encoding. It has

been trained on both the NTIRE20 dataset (NH-HAZE

dataset [11]) as well as the following external datasets – I-

HAZE [6], O-HAZE [10], HazeRD and D-HAZY [7]. The

custom loss function used is a weighted hybrid loss com-

bining SSIM metric with MSE loss using a weighting fac-

tor that reflects their relative magnitude and effect on image

quality. The relative weighting of the SSIM Loss to MSE

was 0.9999 to 0.0001 based on their relative magnitude and

effect on image quality. The skip connections from U-Net

ensure that there is no loss in context with respect to the in-

put. The optimizer used for training is Adam with an initial

learning rate of 1e-3 and a weight decay of 1e-6. When used

on a GPU platform, the model processes images in 0.9486

seconds.

Figure 18: The architecture of the method proposed by

hazefreeworld team.
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