Looking into the dark: from image to video Zibo Meng **Deep Learning Scientist**

OPPO US R&D

Entered 40+ markets

Ranked #5 in 2020 Q1*

More than 350 million users

* https://www.counterpointresearch.com/global-smartphone-shipments-plummet-300mn/

"Lux" is the standard unit of measure for illumination (i.e. brightness) of a surface at a given point.

"Lux" is the standard unit of measure for illumination (i.e. brightness) of a surface at a given point.

direct

da non-dire)

dark (e.g

	illuminance			
sunlight	~100K lux			
ylight ect sunlight)	~10K lux			
. moonlight)	< 1 lux			

Traditional Camera Pipeline

sub-optimal results due to low signal-to-noise ratio (low photon counts in the dark)

Raise ISO sensitivity to gain brightness? noise amplification in the electronic signal

Increase exposure time?

blur due to hand shake or object motion

Use flash?

reflections, glare, shadows

Imaging in the dark

Let AI do the work

What's inside

What's inside

A U-net: an encoder-decoder network Works great for image-to-image translation

Chen et. al. & Zamir et. al.

Works great for image-to-image translation, but yields results with color inconsistency.

A U-net: an encoder-decoder network Works great for image-to-image translation

Works great for image-to-image translation, but yields results with color inconsistency.

A U-net: an encoder-decoder network Works great for image-to-image translation

Chen et. al. & Zamir et. al.

Works great for image-to-image translation, but yields results with color inconsistency.

OPPO dark sight net

A U-net: an encoder-decoder network Works great for image-to-image translation, but yields results with color inconsistency.

Chen et. al. & Zamir et. al.

OPPO dark sight net

Some Choices of Loss Functions

$$\mathcal{L}_1 = \frac{1}{N} \sum_{p=1}^{N} \left| \hat{y}_p - y_p \right|$$

$$MSE = \frac{1}{N} \sum_{p=1}^{N} (y_p - y_p)^2$$

 $\mathcal{L}_{SSIM} = 1 -$

 $\mathcal{L}_{MS-SSIM} =$

 $\mathcal{L}_{perceptual} =$

$$\frac{1}{N}\sum_{p=1}^{N}SSIN(y_p, y_p)$$

$$1 - \frac{1}{N} \sum_{p=1}^{N} MS - SSIM(y_p, y_p)$$

$$= \frac{1}{N} \sum_{p=1}^{N} (\hat{\phi(y_p)} - \phi(y_p))^2$$

 $PSNR = 20 \cdot \log_{10} \left(\frac{MaxPixelValue}{\sqrt{MSE}} \right)$

Simple to calculate

- Has clear physical meanings
- Does not correlate very well with human's perceived visual quality

Structural Similarity (SSIM)

Natural images are highly structured: pixels exhibit strong dependencies on each other

Sensitivity of human visual system (HVS) is related to: luminance (mean), contrast (variance), structure (covariance)

 $SSIM(y_p, y_p)$

$$= luminance \cdot contrast \cdot structure = l(y_p, y_p) \cdot c(y_p, y_p) \cdot s(y_p, y_p)$$

$$= \frac{2\mu_{y_p}^{\circ} \mu_{y_p} + C_1}{\mu_{y_p}^{2} + \mu_{y_p}^{2} + C_1} \cdot \frac{2\sigma_{y_p}^{\circ} \sigma_{y_p} + C_2}{\sigma_{y_p}^{2} + \sigma_{y_p}^{2} + C_2} \cdot \frac{\sigma_{y_p}^{\circ} + C_3}{\sigma_{y_p}^{\circ} \sigma_{y_p} + C_3}$$

$$= \frac{2\mu_{y_p}^{\circ} \mu_{y_p} + C_1}{\mu_{y_p}^{2} + \mu_{y_p}^{2} + C_1} \cdot \frac{2\sigma_{y_p}^{\circ} + C_2}{\sigma_{y_p}^{2} + \sigma_{y_p}^{2} + C_2} = l(y_p, y_p) \cdot cs(y_p, y_p)$$

 $C_1 = (K_1 \cdot MaxPixelValue)^2 C_2 = (K_2 \cdot MaxPixelValue)^2 C_3 = C_2/2$

Multi-Scale Structural Similarity (MS-SSIM)

$$SSIM(\hat{y}, y) = \frac{2\mu_{\hat{y}}\mu_{y} + C_{1}}{\mu_{\hat{y}}^{2} + \mu_{y}^{2} + C_{1}} \cdot \frac{2\sigma_{\hat{y}y} + C_{2}}{\sigma_{\hat{y}}^{2} + \sigma_{y}^{2} + C_{2}} = \hat{l(y, y)} \cdot \hat{cs(y, y)}$$
$$C_{1} = (K_{1} \cdot MaxPixelValue)^{2}C_{2} = (K_{2} \cdot MaxPixelValue)^{2}C_{2} = (K_{2} \cdot MaxPixelValue)^{2}C_{2}$$

$$MS - SSIM(y_p, y_p) = \left[l_M(y_p, y_p) \right]^{\gamma_M} \cdot \prod_{k=1}^{M} \left[cs_k(y_p, y_p) \right]^{\eta_k}$$

MS-SSIM extends **SSIM** by computing variance and covariance components at M scales

dimensions for (k-1) times

More flexible than single-scale SSIM: incorporated variations of image resolution and viewing conditions

 $(elValue)^2$ \cdot maxrixelvalue)⁻ $L_2 = (K_2)$

 k^{th} scale image = sub-sampling original image by factor of 2 in both spatial

Perceptual Loss

 $\mathcal{L}_{perceptual} =$

Measures the difference between deep feature representations of the output and ground-truth images, each extracted from a pre-trained neural network on ImageNet.

Enhances semantic similarity at deep feature representation level and serves as a perceptual metric.

Zhang et. al. arXiv:1801.03924, CVPR 2018

$$\frac{1}{N}\sum_{p=1}^{N} \left(\hat{\phi(y_p)} - \phi(y_p) \right)^2$$

Chen et. al. (arXiv:1805.01934):

 $\mathcal{L}_1(also tried \mathcal{L}_2 and \mathcal{L}_{SSIM} separately)$

Zamir et. al. (arXiv:1904.05939):

 $\alpha(\beta \mathcal{L}_1 + (1 - \beta)\mathcal{L}_{MS-SSIM}) + (1 - \alpha)\mathcal{L}_{perceptual} \quad \alpha = 0.9 \quad \beta = 0.99$

OPPO: \mathcal{L}_1 $\mathcal{L}_{MS-SSIM}$

????

Quantitative Results

 $PSNR = 10 \cdot \log_{10} \left(\frac{MaxPixelValue^2}{MSE} \right) \qquad M$

	Sony 7SII camera Bayer sensor 4240 x 2832		Fujifilm X-T2 camera APS-C X-Trans sensor 6000 x 4000	
	PSNR	SSIM	PSNR	SSIM
Chen et. al. <u>sep</u> (arXiv:180 5.01934)	28.88	0.787	26.61	0.68
Zamir et. al. [see](arXiv:1904 .05939)	29.43		27.63	
OPPO	29.72	0.795	28.15	0.722

opp

MeanSquaredError(MSE) =
$$\frac{1}{N} \sum_{p=1}^{N} (\hat{y}_p - y_p)^2$$

Qualitative Results

Fujifilm X-T2 camera (APS-C X-Trans sensor, 6000 x 4000) ISO = 6400exposure time = 100ms

Qualitative Results

Chen et. al.

OPPO

opp

Zamir et. al.

Ground truth

Deliver to Cell Phones

Deliver to Cell Phones

Light up the darkness

Light up the darkness

Light up the darkness

oppo

Move to videos

Hard to produce paired data for videos

The algorithm should run in real time

The processed frames should be temporally consistent

Hard to produce paired data for videos Adopted the model based on single images

The algorithm should run in real time

The processed frames should be temporally consistent

Move to videos

Move to videos

Hard to produce paired data for videos Adopted the model based on single images

The algorithm should run in real time The model should be extensively compressed

The processed frames should be temporally consistent

Hard to produce paired data for videos Adopted the model based on single images

The algorithm should run in real time The model should be extensively compressed

The processed frames should be temporally consistent A temporal filtering approach should be employed

Move to videos

Thank you!

