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Wire Frame: Adobe RGB 

Solid: Epson Printer

i) If we could manufacture any 
reflectance (theoretically possible), 
what would be the gamut of 
colours? 

ii) This theoretical gamut is called 
the Object Colour Solid (OCS) 

How the OCS is computed (efficiently) 
has been the source of research

iii) How we solve for the OCS can help 
us solve for pairs of reflectances that 
are metamerrs
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In the discrete domain, this optimisation 
is a ‘Quadratic Program’. Can be solved 
Efficiently. (Actually, can be further 
simplified as a linear program)



Object Colour Solid
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Metamer Sets: 



Can we recover ‘material’ 
from images?

And does this help solve vision tasks?



Discretely …
Z

!
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Nx3 matrix of  
‘effective’ sensitivities

Nx1 reflectance 
vector

⇢ = RtS

3x1 RGB
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Reflectances that ‘project’ to p

Reflectance hyper-plane 
constraint: All vectors S  
that ‘project’ to the same 

RGB lie on a plane 
(if 31 sample  

wavelengths then 
28 dimensional affine hyperplane or ‘flat’)

RtS = p ⌘
Rt[R↵+R?�] = p

Sref +
28X
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Metamer Sets

The Metamer Set is the intersection 
of a hyper-cube with a hyper-plane 

(can have complex geometry [thousands 
of points, computationally hard]

O(nd/2)

A hypercube is the intersection of half spaces 
delimited by the cube’s faces (hyperplanes) 

Intersection of half spaces in N-D is 
found using ND convex hull algorithm
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Basic Metamer Sets

⇡ ⇡ ⇡

⇡ denotes N-dimensional reflectances that ‘live’ inside 
the 31-d hypercube (N<<31)
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Basis Approximations

S(�) ⇡
NX

i=1

�iSi(�)
How many basis functions 

are needed?
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Worked Example

Canon D1 
Spectral Sensitivities

Q(�) E(�)

S(�)



Z
Q(�))E(�)S(�)d� = [1.19 4.24 2.56]

The spectra shown lie on the convex hull of the ‘Metamer Set’ 

All spectra integrate to [1.19 4.24 2.45] 

All convex combinations integrate to [1.19 4.24 2.45]
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We are trying to characterise all reflectances 
which integrate to a single RGB. 

The set comprises a ref spectrum that projects 
to the desired RGB and a combination of 
spectra that is orthogonal to the sensor space

If the reflectance basis is 5D. There is a single 
ref reflectance and a 2-dimensional set of  
metameric blacks

The metamer set is a 2-dimensional hyperplane 
in 5D (which in turn is embedded in 31-D)
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Reprojecting

R 
G 
B

metamer 
set

integrating 
(projecting) 
the metamer 

set to a second  
viewing condition 

typically 
generates 

multiple ‘colors’
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Re-projecting to XYZ

Z

0.25 0.37 0.38
0.24 0.36 0.38
0.25 0.36 0.38
0.25 0.35 0.38
0.30 0.30 0.38
0.31 0.32 0.38

=



Re-projecting to XYZ

Z

0.25 0.37 0.38
0.24 0.36 0.38
0.25 0.36 0.38
0.25 0.35 0.38
0.30 0.30 0.38
0.31 0.32 0.38

=

2-dimensional 
hyperplane of reflectances 
maps to 2D plane in xyz



8 dimensional reflectance basis 

yields 5 dimensional bounded 
convex region (in 8-d space) 
of metamers. 

All of which integrate to 
[1.19 4.24 2.56]  
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How Many Dimensions?
Actual (blue) vs 3D approx

Actual (blue) vs 6D approx
Actual (blue) vs 9D approx

Actual (blue) vs 12D approx

ground-truth

closest in X-D metamer set



Variants on a theme



Noise:  
Example

1. Well capacity 50000 electrons 

2. Between .1 and 200 photons/10Nm wavelength 

band 

3. 10 bit quantization  

4. Sensors scaled so one sensor at one wavelength 

captures 100% of the photons 

5. Shot-noise (assumed normally distributed.

Canon D1 
Spectral Sensitivities
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What effect does noise 
have on the metamer  

set? 

Intuitively, it becomes larger

RkS = pk , k 2 {R,G,B}
0  S  1

normal metamer set

pk � ✏  RkS  pk + ✏ , k 2 {R,G,B}
0  S  1

with    noise✏



Noise

The ‘paramer’ set (computed with ~2% noise)  
 is 3* the volume of the noise free Metamer set



Noise vs 
Dimensionality



60% grey that maps to a single RGB could be 
the ‘projection of many metamers. 

Under a second light the metamer set spans 
a set of possible RGBs

6 dimensional 
basis

10 dimensional 
basis

10 dimensional 
basis+noise

`all possible’ 
spectra

`all possible’  
spectra+noise



Invariant Metamer 
Sets



Metamer Set: 6 dimensional basis Metamer Set: 10 dimensional basis



What are good sensors?
i) The projection in the ‘luminance’ direction 
has small metamer sets 

ii) Possibly, given N>3 sensors, there are 
linear combinations which give RGB (sRGB?) 
with small metamer sets (use >3 sensors 
to get provably stable 3 sensor measurements) 

iii) It can’t just be about metamers. Below is 
an sensor set that has many of  the same metamers 
for all lights
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Summary
1) A ‘Physics-Based’ approach to measurement asks 
what can I reliably recover (given known viewing conditions)

2) Reliably: what the 3 numbers ‘mean’ and how certain or 
uncertain they are (are you sure its not a road sign?)

3) Under idealized conditions ‘Metamer Set’ theory provides 
an answer to what can be reliably measured and 

provides explicit measure of uncertainty

4) Noise models can be incorporated. Plus: computationally 
*more* efficient. Minus: more uncertaintly

5) Next Steps? Metamer sets and other tools exist for 
answering a variety of questions. Example: 

“Metamer Constrained Colour Correction”


