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Simple Image Formation
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Emissive chart for imager calibration

Jeffrey M. DiCarlo, Glen Eric Montgomery and Steven W. Trovinger
Hewlett-Packard Laboratories
Palo Alto, California
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Figure 1. Responsivity functions for two hundred instances of a
consumer camera plotted on top of one another. The widths of the
lines indicate the responsivity variations across camera instances.




Relative responsivity

Emissive chart for imager calibration

Jeffrey M. DiCarlo, Glen Eric Montgomery and Steven W. Trovinger
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Figure 1. Responsivity functions for two hundred instances of a
consumer camera plotted on top of one another. The widths of the
lines indicate the responsivity variations across camera instances.
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Figure 6. The first prototype of the emissive calibration chart.
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Figure 7. The spectral power distributions of the LED light
sources used in the emissive calibration chart.
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Wire Frame: Adobe RGB

Solid: Epson Printer

1) If we could manufacture any
reflectance (theoretically possible),
what would be the gamut of
colours?

ii) This theoretical gamut is called
the Object Colour Solid (OCS)

I3.3[n1'f.ll How the OCS is computed (efficiently)
) DA has been the source of research

i) How we solve for the OCS can help
us solve for pairs of reflectances that

are metamerrs
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R
0<=50\) <=1 In the discrete domain, this optimisation
) In.pl] s.t. & p= [, R(A)S(A)dA is a ‘Quadratic Program’. Can be solved
(Isx3 —nn')p =0 Efficiently. (Actually, can be further

simplified as a linear program)
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Metamer Sets:



Can we recover ‘material’
from images”?
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The Set of all Reflectances

Hyper-cube
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Metamer Sets

The Metamer Set is the intersection
of a hyper-cube with a hyper-plane
(can have complex geometry [thousands
of points, computationally hard]

O(nd/z)

A hypercube is the intersection of half spaces
delimited by the cube’s faces (hyperplanes)

Intersection of half spaces in N-D is
found using ND convex hull algorithm
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Basic Metamer Sets
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denotes N-dimensional reflectances that ‘live’ inside
the 31-d hypercube (N<<31)
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Basis Approximations

are needed?
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Shown: ‘extremal’ metamers for
grey reflectance assuming 7 These are solved for *exactly* because

dimensional CVA basis set
i) hypercube constraints in 7D are
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Shown: ‘extremal’ metamers for
grey reflectance assuming 7
dimensional CVA basis set
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These are solved for *exactly* because

i) hypercube constraints in 7D are
defined by 14 hyperplanes

ii) Intersecting the

14 cube hyperplanes with the reflectance
hyperplane can be computed using

high dimensional convex hull

i) Complexity ~ O(floor([D-3]/2))
iv) 7D = O(n"2), 12D=0(n"3)
v) Can calculate basic metamer sets for

12,13,14 dimensional basis (more
degrees of freedom than typically used
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QA

—

0.8

o
>

S
(V)
=
]
o
g
g
8
()
o

o
no

500 550 600 650
Wavelength (Nanometres)

550 600
Wavelength (Nanometres)

Canon D1
Spectral Sensitivities

—

o
fo)

o
o

o
w

o)
0O
=
[
=
O
© 0.4
G
[
oc
X

o
N

450 500 550 600 650 700
Wavelength (Nanometres)




QN)EN)S(A\)d\ = [1.19 4.24 2.56]
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The spectra shown lie on the convex hull of the ‘Metamer Set’
All spectra integrate to [1.19 4.24 2.45]

All convex combinations integrate to [1.19 4.24 2.45]
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We are trying to characterise all reflectances
which integrate to a single RGB.

The set comprises a ref spectrum that projects
to the desired RGB and a combination of
spectra that is orthogonal to the sensor space

If the reflectance basis is 5D. There is a single
ref reflectance and a 2-dimensional set of

% metameric blacks

i—1 The metamer set is a 2-dimensional hyperplane
in 5D (which in turn is embedded in 31-D)
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Reprojecting

R
G metamer
set
B integrating
(projecting)
the metamer
s set to a second
g t viewing condition
typically
A generates

< multiple ‘colors’
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Re-projecting to XY/
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Re-projecting to XY/
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Re-projecting to XY/
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8 dimensional reflectance basis

yields 5 dimensional bounded
convex region (in 8-d space)
of metamers.

All of which integrate to
[1.19 4.24 2.56]
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How Many Dimensions”
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How Many Dimensions”

Actual (blue) vs 3D approx

i ‘Actual (blue) vs 6D approx

O
o

o

~
O
(&)

o
o
C
©
]
O
[}
g—
()
o
X

=
w
% Reflectance
o
=

o
w

500 550 600 650 700
Wavelength (Nanometres)

ground-truth

closest in X-D metamer set



How Many Dimensions”

Actual (blue) vs 3D approx

‘Actual (blue) vs 6D approx

> Actual (blue) vs 9D approx

0.7

O
o

o
o

o
O
=
=
O
04
©
o
X

=
w
% Reflectance
o
=

o
w
% Reflectance

450 500 550 600 650 700
Wavelength (Nanometres)

ground-truth

closest in X-D metamer set




How Many Dimensions”

Actual (blue) vs 3D approx

‘Actual (blue) vs 6D approx
Actual (blue) vs 9D approx

0.7
V/ e
Actual (blue) vs 12D approx

0.7

O
o

o

o
o
o)

®
o
=
=
3}
04
©
o
X

=
w
% Reflectance
o
=
o
(@)

(@)
w
% Reflectance

% Reflectance

O
w

ground-truth

closest in X-D metamer set




Variants on a theme



Noise:
Example

Well capacity 50000 electrons

Between .1 and 200 photons/10Nm wavelength
band

10 bit quantization

Sensors scaled so one sensor at one wavelength
captures 100% of the photons

Shot-noise (assumed normally distributed.
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The ‘paramer’ set (computed with ~2% noise)
IS 3" the volume of the noise free Metamer set




Noise vs
Dimensionality



60% grey that maps to a single RGB could be
the ‘projection of many metamers.
Under a second light the metamer set spans
a set of possible RGBs

6 dimensional 10 dimensional 10 dimensional “all possible’ “all possible’
basis basis basis+noise spectra spectra+noise




Invariant Metamer
Sets
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Metamer Set: 6 dimensional basis Metamer Set: 10 dimensional basis




What are good sensors?

i) The projection in the ‘luminance’ direction
has small metamer sets

ii) Possibly, given N>3 sensors, there are

linear combinations which give RGB (sRGB?)
with small metamer sets (use >3 sensors

to get provably stable 3 sensor measurements)

i) It can’t just be about metamers. Below is
an sensor set that has many of the same metamers
for all lights
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Formal connections between lightness algorithms

Anya Hurlbert

J. Opt. Soc. Am. A/Vol. 3, No. 10/October 1986
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summary

1) A ‘Physics-Based’ approach to measurement asks
what can | reliably recover (given known viewing conditions)

2) Reliably: what the 3 numbers ‘mean’ and how certain or
uncertain they are (are you sure its not a road sign?)

3) Under idealized conditions ‘Metamer Set’ theory provides
an answer to what can be reliably measured and
provides explicit measure of uncertainty

4) Noise models can be incorporated. Plus: computationally
*more* efficient. Minus: more uncertaintly

5) Next Steps? Metamer sets and other tools exist for
answering a variety of questions. Example:
“Metamer Constrained Colour Correction”




