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Generative Adversarial Networks (GANs)
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Image-to-Image Translation Framework

Supervised Unsupervised

Unimodal pix2pix, CRN, SRGAN DiscoGAN, CycleGAN, UNIT, DTN, 
DualGAN, StarGAN, ….

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN
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Unimodal vs Multimodal

F ( ) =

F ( ) =

Unimodal

Multimodal

p(Y |X) = �(F (X))

p(Y |X) = F (X,S)
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High Resolution Image Semantic Manipulation
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Joint Distribution Learning
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Our Method 
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Our Method 

• Extending to high resolution
• New generator
• New discriminator
• New objective function

• Using instance-level segmentation maps
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*Similar ideas in Durugkar et al. 2016, Iizuka et al. 2017, Zhang et al. 2017
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• Boundary improvement
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Our Method 
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Our Method 

• Extending to high resolution
• Using instance-level segmentation maps
• Boundary improvement
• Multi-modal results using feature embedding
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Our Method

• Multi-modal (one-to-many) results
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Results 

• Comparisons with
• pix2pix [Isola et al. 2017]
• CRN [Chen and Koltun 2017]

• Datasets
• Cityscapes [Cordts et al. 2016]
• NYU [Silberman et al. 2012]
• ADE20K [Zhou et al. 2017]
• Helen Face [Smith et al. 2013]
• CelebA-HQ [Karras et al. 2017]

29



Results
• Quantitative comparisons (Cityscapes) 

• Semantic segmentation scores

• Subjective scores
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Results 

• Qualitative comparisons
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Results on NYU dataset 
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Results on NYU dataset 
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Results on ADE20K dataset
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Results on CelebA-HQ 
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Results on CelebA-HQ 
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Results on CelebA-HQ 

38

EdgesSynthesized Ground truth



Results on CelebA-HQ 
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Applications: style changing
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Applications: style changing
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Applications: style changing
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Applications: label changing 
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Applications: adding objects 
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Applications: adding strokes 
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Applications: adding strokes 
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Live Demo in the NVIDIA Booth
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Live Demo in the NVIDIA Booth
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Extension: vid2vidHD
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Extensions: Videos
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Extension: vid2vidHD

52Paper and code will be released soon!

xt = (1�mt)�wt�1 +mt � ht



Extension: vid2vidHD

53Paper and code will be released soon!



Extensions: Videos
• edge2face
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Conclusion

• We present a GAN based framework that can
• Synthesize high-res realistic images
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Conclusion

• We present a GAN based framework that can
• Synthesize high-res realistic images
• Generate multi-modal results
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Thank you!
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Project: https://tcwang0509.github.io/pix2pixHD/
Code:    https://github.com/NVIDIA/pix2pixHD


