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ABSTRACT
Image annotation is an important computer vision problem
where the goal is to determine the relevance of annotation
terms for images. Image annotation has two main applica-
tions: (i) proposing a list of relevant terms to users that want
to assign indexing terms to images, and (ii) supporting key-
word based search for images without indexing terms, using
the relevance estimates to rank images.

In this paper we present TagProp, a weighted nearest
neighbour model that predicts the term relevance of images
by taking a weighted sum of the annotations of the visually
most similar images in an annotated training set. TagProp
can use a collection of distance measures capturing different
aspects of image content, such as local shape descriptors,
and global colour histograms. It automatically finds the
optimal combination of distances to define the visual neigh-
bours of images that are most useful for annotation predic-
tion. TagProp compensates for the varying frequencies of
annotation terms using a term-specific sigmoid to scale the
weighted nearest neighbour tag predictions.

We evaluate different variants of TagProp with experi-
ments on the MIR Flickr set, and compare with an approach
that learns a separate SVM classifier for each annotation
term. We also consider using Flickr tags to train our mod-
els, both as additional features and as training labels. We
find the SVMs to work better when learning from the man-
ual annotations, but TagProp to work better when learning
from the Flickr tags. We also find that using the Flickr tags
as a feature can significantly improve the performance of
SVMs learned from manual annotations.
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1. INTRODUCTION
In image retrieval the goal is to find images from a database

that are relevant to a user specified query. The two main im-
age retrieval scenarios are query by example, and keyword-
based queries. In the former, the user gives a query image
and the goal is to retrieve ‘similar’ images from the database.
Image similarity can be defined in several ways, but gener-
ally the goal is to find images of the same scene or the same
objects, while being robust against changes in the imaging
conditions (e.g. changes in viewpoint, scale, lighting, occlu-
sions, etc.), see e.g. [12]. For the latter, the goal is to retrieve
images that are relevant to the query keywords. In this case
the images in the database should be indexed with the terms
in an annotation vocabulary. Obviously, manually assigning
keywords to images is a tedious process, hence the interest
in automatically predicting the annotation term relevance
for images, see e.g. [8, 15, 16, 19].

There are two ways in which we can use automatic image
annotation to facilitate keyword-based image search. First,
we can assist a user to annotate his images by proposing a
short list of annotation terms sorted by their estimated rele-
vance. This is advantageous if the vocabulary contains many
words (say more than 100), allowing the user to quickly se-
lect the relevant terms without exhaustively checking the
complete list of terms. Second, the relevance predictions
can be used directly to enable keyword-based search on im-
age collections that lack manual annotations. In this case,
we rank the images by the likelihood that their annotation
contains the query terms.

In this paper we present TagProp, a weighted nearest
neighbour image annotation model for which the parameters
are set by maximising the likelihood of the annotations of a



clouds sky (0.99) female people (0.62)
sea clouds (0.94) indoor indoor (0.49)
sky water (0.90) male female (0.31)
structures sea (0.70) night portrait (0.30)
sunset sunset (0.51) people male (0.24)
water structures (0.43) portrait night (0.13)

clouds sky (0.60) clouds sky (0.99)
female structures (0.36) male clouds (0.99)
male tree (0.24) people water (0.69)
people people (0.18) sea structures (0.64)
sky clouds (0.17) sky sea (0.32)
structures indoor (0.13) water tree (0.32)

animals sky (0.90) animals sky (0.52)
bird water (0.53) bird water (0.50)
lake clouds (0.45) lake structures (0.48)
river structures (0.39) river people (0.23)
sea transport (0.29) sea tree (0.22)
water sunset (0.22) water clouds (0.20)

Figure 1: Example images from the MIR Flickr set, for each image we show the manually assigned annotation
terms, and those predicted using TagProp with the relevance estimate in brackets, and underlined if correct.
In the first row the top predicted terms coincide with the actual predictions, the middle row four of the top
six terms are correct (a typical situation), and in the last row only one of the top six predictions is correct.

collection of annotated training images. Annotation terms
of test images are predicted by means of a weighted sum
of the annotations of their neighbours: the visually most
similar images in the training set. TagProp can combine a
collection of several distance measures to define visual sim-
ilarity, capturing different aspects of image content, such as
local shape descriptors, and global colour histograms. The
parameters of the model combine the various visual simi-
larities to define the optimal weights to training images in
terms of the likelihood criterion. TagProp also includes a
term-specific sigmoid function to compensate for the differ-
ent frequencies of annotation terms.

Our model is inspired by recent successful methods [6,
13, 18], that propagate the annotations of training images
to new images. Our models are learnt in a discriminative
manner, rather than using held-out data [6], or using neigh-
bours in an adhoc manner to annotate images as in [18].
In [18] the authors also tried to combine different image
similarities by learning a binary classifier separating image
pairs that have several tags in common from images that
do not share any tags. However, this approach did not give
better results than an equally weighted combination of the
distance measures. Our model does successfully combine
different similarity measures, because we integrate learning
the distance combination in the model, rather than learn-
ing it through solving an auxiliary problem. Other nearest
neighbour techniques for image annotation include methods
based on label diffusion over a similarity graph of labeled
and unlabelled images [16, 22], or learning discriminative
models in neighbourhoods of test images [25].

Other related work includes a variety of generative mod-

els. To annotate a new image these models compute the
conditional probability over annotation terms given the vi-
sual features of the image. One important family of meth-
ods is based on topic models such as latent Dirichlet alloca-
tion, probabilistic latent semantic analysis, and hierarchical
Dirichlet processes, see e.g. [1, 20, 24]. A second family of
methods uses mixture models to define a joint distribution
over image features and annotation tags. Sometimes a fixed
number of mixture components over visual features per key-
word is used [3], while other models use the training images
as components to define a mixture model over visual features
and tags [6, 13]. The latter can be seen as non-parametric
density estimators over the co-occurrence of images and an-
notations. A potential weakness of generative models is that
they maximise the generative data likelihood, which is not
necessarily optimal for predictive performance. Discrimina-
tive models for tag prediction have also been proposed [4,
8, 10]. These methods learn a separate classifier for each
annotation term to predict whether a test image is relevant.

We assess the image annotation performance of different
variants of TagProp, and compare against an approach that
learns a separate classifier for each annotation term to pre-
dict its relevance for an image. For the separate classifiers
we choose non-linear support vector machines (SVMs) based
on local image features, which have shown state-of-the-art
performance for image classification [26]. Our evaluations
are performed using the MIR Flickr set [11], a recent data
set that contains 25.000 images downloaded from the Flickr
photo sharing website1. For each image, the tags associ-
ated with the image on the Flickr website are available, as

1See http://www.flickr.com.



well as a precise manual annotation for 24 concepts. In Fig-
ure 1 we show several example images from the database, to-
gether with their manual annotations, and the annotations
predicted using TagProp.

In our experiments we consider learning models from both
the manual annotation and the Flickr tags, furthermore we
consider the Flickr tags as additional features rather than
training labels. When learning from the manual annotations
we find that the SVM approach performs better than Tag-
Prop, albeit at the cost of learning separate models for each
concept. The Flickr tags provide a strong additional feature
for the SVM models in this case. When training the models
on the basis of the Flickr tags instead of the manual annota-
tion we find that TagProp gives best performance, probably
because it has fewer parameters and is less likely to overfit
to the noise in the user tags.

The rest of this paper is organized as follows. In the next
section we present our TagProp model in detail. In Section 3
we describe the experimental setup, and present results in
Section 4. We present our conclusions in Section 5.

2. IMAGE ANNOTATION WITH TAGPROP
In this section we first present TagProp, our weighted

nearest neighbour annotation model. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition. In Sec-
tion 2.2 and Section 2.3 we proceed by discussing two ways
to define the weights for neighbours in this model. In Sec-
tion 2.4 we extend the model by adding a per-word sigmoid
function that can compensate for the different frequencies of
annotation terms in the database.

2.1 A Weighted Nearest Neighbour Model
In the following we use yiw ∈ {−1,+1} to denote whether

concept w is relevant for image i or not. The probability
that concept w is relevant for image i, i.e. p(yiw = +1), is
obtained by taking a weighted sum of the relevance values
for w of neighbouring training images j. Formally, we define

p(yiw = +1) =
X

j

πijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1− ε for yjw = +1,

ε otherwise.
(2)

The πij denote the weight of training image j when pre-
dicting the annotation for image i. To ensure proper dis-
tributions, we require that πij ≥ 0, and

P
j πij = 1. Each

term p(yiw = +1|j) in the weighted sum is the prediction
according to neighbour j. Neighbours predict with proba-
bility (1−ε) that image i has the same relevance for concept
w as itself. The introduction of ε is a technicality to avoid
zero prediction probabilities when none of the neighbours j
have the correct relevance value. In practice we fix ε = 10−5,
although the exact value has little impact on performance.

The parameters of the model, which we will introduce be-
low, control the weights πij . To estimate the parameters we
maximize the log-likelihood of predicting the correct annota-
tions for training images in a leave-one-out manner. Taking
care to exclude each training image as a neighbour of itself,
i.e. by setting πii = 0, our objective is to maximize

L =
X
i,w

ln p(yiw). (3)

Below, we discuss two different ways to define the weights
of the model. Given a particular definition of the weights,
the log-likelihood can be optimised using gradient descend.

2.2 Rank-based weighting
When using rank-based weights we set πij = γk if j is

the k-th nearest neighbour of i. This directly generalizes a
simple K nearest neighbour approach, where the K nearest
neighbours receive an equal weight of 1/K. The data log-
likelihood (3) is concave in the parameters γk, and can be
maximised using an EM-algorithm or a projected-gradient
algorithm. In our implementation we use the latter because
of its speed. To limit the computational cost of the learning
algorithm we only allow non-zero weights for the first K
neighbours, typically K is in the order of 100 to 1000. The
number of parameters of the model then equals K. By pre-
computing the K nearest neighbours of each training image
the run-time of the learning algorithm is O(NK) with N
the number of training images. In Section 4 we show an
example of a set of weights learned in this manner.

In order to make use of several different distance measures
between images we can extend the model by introducing a
weight for each combination of rank and distance measure.
For each distance measure d we define a weight πd

ij that is
equal to γdk if j is the k-th neighbour of i according to the d-
th distance measure. The total weight for an image j is then
given by the sum of weights πij =

P
d π

d
ij obtained using

different distance measures. Again we require all weights to
be non-negative and to sum to unity:

P
j,d π

d
ij = 1. In this

manner we effectively learn rank-based weights per distance
measure, and at the same time learn how much to rely on
the rank-based weights provided by each distance measure.

2.3 Distance-based weighting
Alternatively, we can define the weights directly as a func-

tion of distance, rather than rank. In this case the weights
will depend smoothly on the distance, and we can learn a
distance measure that leads to optimal predictions. Here,
we define the weights of training images j for an image i to
decrease exponentially with distance by setting

πij =
exp(−dθ(i, j))P
j′ exp(−dθ(i, j′))

, (4)

where dθ is a distance metric with parameters θ that we
want to optimize. Choices for dθ include Mahalanobis dis-
tances parametrized by a semi-definite matrix, and positive
linear distance combinations dθ(i, j) = θ>dij where dij is
a vector of base distances between image i and j, and θ
contains the positive coefficients of the linear distance com-
bination. In our experiments we have used the latter case of
linear distance combinations, in which the number of param-
eters equals the number of base distances that are combined.
When we use a single distance θ is a scalar that controls the
decay of the weights with distance, and it is the only pa-
rameter of the model. We maximize the log-likelihood using
a projected gradient algorithm under positivity constraints
on the elements of θ.

As with rank-based weights, we only compute weights for
a limited number of K neighbours to reduce the computa-
tional cost of training the model. When using a single dis-
tance measure we simply select the K nearest neighbours,
assuming that the weights will tend to zero for further neigh-
bours. When learning a linear combination of several dis-



tances it is not clear beforehand which will be the nearest
neighbours, as the distance measure changes during learning.
Given that we will use K neighbours, we therefore include
as many neighbours as possible from each base distance. In
this way we are likely to include all images with large πij

regardless of the distance combination θ that is learnt.

2.4 Word-specific Logistic Discriminants
The weighted nearest neighbour model introduced above

tends to have relatively low recall scores for rare annota-
tion terms. This effect is easy to understand as in order
to receive a high probability for the presence of a term, it
needs to be present among most neighbours with a signif-
icant weight. This, however, is unlikely to be the case for
rare annotation terms. Even if some of the neighbours with
significant weight are annotated with the term, we will still
tend to predict it with a low probability as compared to the
predictions for frequent terms.

To overcome this, we introduce word-specific logistic dis-
criminant model that can boost the probability for rare
terms and possibly decrease it for frequent ones. The logistic
model uses weighted neighbour predictions by defining

p(yiw = +1) = σ(αwxiw + βw), (5)

xiw =
X

j

πijp(yiw = +1|j), (6)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function, and
xiw is the weighted nearest neighbour prediction for term w
and image i used before, c.f. Equation (1). The word-specific
models adds two parameters per annotation term.

In practice we estimate the parameters {αw, βw} and the
ones which control the weights in an alternating fashion. For
fixed πij the model is a logistic discriminant model, and the
log-likelihood is concave in {αw, βw}, and can be trained
per term. In the other step we optimize the parameters
that control the weights πij using gradient descend. We
observe rapid convergence, typically after alternating the
optimization three times. We refer to [9] for the derivatives
of the different variants of the model.

3. EXPERIMENTAL SETUP
In this section we describe the data set used in our experi-

ments, the performance evaluation measures, and the visual
feature extraction procedures.

3.1 The MIR Flickr set
The MIR Flickr set has been recently introduced [11]

to evaluate keyword-based image retrieval methods. The
set contains 25.000 images that were downloaded from the
Flickr website. For each image the tags that Flickr users
assigned to the image are available, as well as EXIF infor-
mation fields. The tags are a valuable resource, but they
tend to be unreliable. Not all tags are actually relevant
to the image content, as users assign labels to several im-
ages at a time, and assign labels of objects or places even
if they are not actually shown in the image. For example,
images labeled with car might be taken from a car, rather
than depicting one. Moreover, the user tags tend to be far
from complete: usually people add a few tags, rather than
an exhaustive list of relevant terms. In our experiments we
limited the set of tags to the 457 most frequent ones that
appear at least 50 times among all 25.000 images.

The images are also manually annotated for 24 concepts
by asking people for each image whether it is at least par-
tially relevant for each concept. A second round of annota-
tion was performed for 14 concepts where a stricter notion
of relevance was used. Here only images labeled as relevant
for a concept in the first round were considered, and marked
relevant only if a significant portion of the image is relevant
for the concept. Throughout this paper we use a ‘*’ to refer
to the strict annotation for concepts, .e.g. ‘baby*’ refers to
the strict annotation for ‘baby’. In total each image is thus
annotated by its relevance for 38 concepts. See Figure 1 for
example annotations, and Table 1 for a list of the concepts.

To estimate and evaluate our models we have split the
data set into equally sized train and test sets, by including
every second image in the train set and using the remain-
ing ones for the test set. In our experiments we have used
both the annotation labels and the Flickr tags to learn our
models. Because of the noise in the tag absence/presence,
performance evaluation is always based on the manual an-
notations.

3.2 Performance Measures
To measure performance we use average precision (AP)

and break even point precision (BEP). To compute these for
a given semantic concept, we rank all images by predicted
relevance and evaluate precision at each position, i.e. at po-
sition n we compute the fraction of images up to rank n that
are indeed relevant according to the manual annotation. AP
averages the precision over all positions of relevant images,
whereas BEP computes the precision at position k, where
k is the number of relevant images for the concept accord-
ing to the manual annotation. Both measures are evaluated
per concept, and possibly averaged over different concepts
to obtain a single measure. These measures indicate how
well we can retrieve images from the database in response
to a keyword-based user query.

In addition to these per-concept measures, we also com-
pute per-image measures as follows. For each image, we rank
the concepts by their predicted relevance, and then compute
AP and BEP as before. These per-image measures, which
we denote iAP and iBEP respectively, indicate how well we
can automatically identify relevant concepts for an image,
e.g. to propose a list of relevant annotation terms to a user.

3.3 Visual Feature Extraction
For each image we extract features that are commonly

used for image search and categorisation. We use two types
of global image descriptors: Gist features [21], and colour
histograms with 16 bins per colour channel, yielding 163 =
4096 dimensional histograms. The colour histograms are
computed in three spaces: RGB, LAB, and HSV. As local
features we use the SIFT descriptor [17], as well as a ro-
bust hue descriptor [23]. Both are computed for regions on
a dense multi-scale grid, and regions found using a Harris-
Laplacian detector. Each local feature descriptor is quan-
tized using k-means on samples from the training set, and
images are represented as a ‘bag-of-words’ histogram. We
used k-means with 1000 and 100 cluster centres for the SIFT
and Hue descriptors respectively. Our histogram features,
all except Gist, are L1 normalised.

Note that our histogram features are invariant to the lay-
out of the image. To encode the spatial layout of the image
to some degree, we follow the approach of [14], and compute
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Figure 2: Performance of TagProp using (a) rank based weights, and (b) distance based weights. The TagProp
variants either use a single distance (blue/dark curves) or all distances (green/light curves), and either include
the sigmoid transformation (solid curves) or not (dashed curves). Note the log scale on the horizontal axis.

the histograms over different image regions. We do so only
for our histogram features, as the Gist already encodes some
form of the layout of the image. We compute the histograms
over three horizontal regions of the image, reflecting the typ-
ical layout of landscape photography. The three histograms
are then concatenated to form a new global descriptor, albeit
one that encodes some of the spatial layout of the image. To
limit the size of the colour histogram, we reduced the quan-
tization to 12 bins in each channel here. We use these new
features in addition to the image-wide histograms. This re-
sults in 15 distinct features, namely one Gist descriptor, 6
colour histograms (3 colour spaces × 2 layouts) and 8 bag-
of-features (2 descriptors × 2 detectors × 2 layouts). To
compute distances from the descriptors we use L2 for Gist,
L1 for colour histograms, and χ2 for the others.

Some of the SVM and TagProp models in our experiments
are based on a single distance. In this case we use an equally
weighted sum of all 15 distance measures, which are all nor-
malised to have a maximum value of 1. When using TagProp
with rank-based weights and multiple distances, we also use
the equally weighted sum of distances to define a 16-th set
of neighbours. For distance-based weights it is not useful to
include the equally weighted sum, as it is already a linear
distance combination itself.

4. EXPERIMENTAL RESULTS
In this section we present our experimental results. In

Section 4.1, we analyse the performance of TagProp when
learning from the manual ground truth annotations, and in
Section 4.2 we compare these results to learning an SVM
classifier per concept. Finally, in Section 4.3 we consider
the Flickr tags to learn the models.

4.1 Evaluating TagProp variants
In our first set of experiments we use different variants

of TagProp to predict the relevance of the 38 manually an-
notated concepts. The variants of TagProp we included use

rank-based or distance-based weights, optionally include the
sigmoid transformation, and either use a single or multiple
distance measures between images. In Figure 2 we give an
overview of performance of the TagProp variants in terms
of BEP, AP, iBEP, and iAP, as a function of the number of
neighbours K that was used to train the model.

For both choices of weights we can observe that the sig-
moid transformation of the predictions consistently has a
beneficial effect. The effect is more pronounced in terms of
iAP and iBEP than in AP and BEP. This is as expected
since the sigmoid introduces a monotonic transform of the
relevance estimates for a given concept. Therefore the rank-
ing of images for a given concept is not affected much, and
so similar AP and BEP values are obtained. However, for a
particular image the sigmoid parameters for different classes
can change the order of their relevance scores, and thus have
a significant impact on the iBEP and iAP scores.

Using either rank-based or distance-based weights, we ob-
serve that the performance can be significantly increased
when learning how to combine the distances. The improve-
ments are strongest when a relatively large number of neigh-
bours is used. This is easily understood as in that case it is
more likely to include useful neighbours from the different
neighbourhoods. Note that when using rank-based weights
and K = 1000 neighbours, we only have 62 neighbours for
each of our distances. When using distance-based weights we
can use K unique neighbours, and generally around K = 200
to K = 500 neighbours leads to optimal results. It is not
quite clear why using more neighbours has a slight negative
effect on performance; apparently the exponential decay of
the weights with distance is appropriate only in moderately
sized neighbourhoods. When using the fixed distance, about
K = 100 neighbours is sufficient to obtain near optimal per-
formance for both weight definitions.

To gain insight into which image distances are most im-
portant in the learned models, we show in Figure 3 the coef-
ficients learned with the model using distance-based weights.
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bination learned with TagProp with distance-based
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Figure 4: Rank-based weights learned using the 15
base distances and their equally weighted sum. The
top panel shows the total weight associated with
each distance, and the bottom panel shows the total
weight associated with rank 1 up to 50.

Note that the weights are sparse: only seven of the 15 dis-
tance measures receive a non-zero weight. The most im-
portant distance measures are the ones based on the Gist
descriptor, and the local SIFT descriptors. From the colour
features, only the Harris-Hue and the LAB and RGB his-
tograms that include spatial layout are used.

In Figure 4 we consider rank-based weights, when using
the 15 base distances together with their equal sum to de-
fine a 16-th set of neighbours. Remember that in this case
a weight for each combination of rank and distance mea-
sure is learned. To visualize the weights we look at the
total weight assigned to neighbours of a certain distance, by
summing over the weights assigned to that distance for dif-
ferent ranks. Similarly, we look at the total weight assigned
to neighbours of a certain rank, by summing over distance
measures. We observe that the weights drop quickly as a
function of their rank, and that also in this case the Gist de-
scriptor and the local SIFT descriptors are the most useful
to define the weights of neighbours. Interestingly, the equal
sum of distances receives the largest weight. This suggests
that images that are similar according to multiple distance
measures are the most useful to predict the annotations.
However, by also assigning weight to neighbours from other
distance measures a significant increase in performance is
obtained, cf. Figure 2.

For the following experiments, we use TagProp models
with sigmoid included, and with 200 and 1000 neighbours
for distance-based and rank-based weights respectively. Fig-
ure 5 gives an overview of the most ‘difficult’ images for Tag-
Prop using distance-based weights: for each of the 14 con-
cepts with a strict labeling we show the positive image with
the lowest score, and the negative image with the highest
score. Interestingly, for several concepts the highest scoring
negative example can be argued to be actually relevant (e.g.
for clouds, flower, night, portrait, river, sea, and tree).

4.2 Comparison with SVM classifiers
When dealing with a limited number of annotation con-

cepts, we can learn a separate classifier for each one of them
instead of using nearest neighbour style models as presented
above. The advantage of such an approach is that a separate
set of parameters can be learned for each concept to opti-
mally separate the relevant from the non-relevant images.

We trained support vector machine (SVM) classifiers us-
ing RBF kernels based on the equally weighted sum of our
base distances. The kernel function that compares two im-
ages is thus given by k(xi, xj) = exp(−d(xi, xj)/λ), where
d(xi, xj) is the equally weighted distance combination, and
λ is set as the average of all pairwise distances among the
training images. For a given concept, we can then rank the
images by the classifier output score.

In order to rank the concepts for a given image we need to
compare the SVM scores of different concepts. To this end
we used 10% of the training data of each concept to learn
a sigmoid to map the SVM scores to probabilities. In order
to set the regularization parameter of the SVMs we perform
10 fold cross-validation.

In Table 1 we present AP scores per annotated concept for
the SVM classifiers, as well as TagProp with distance-based
and rank-based weights. For reference, we also included the
precision for a random ranking, i.e. the fraction of relevant
images per concept. On average, TagProp performs similar
using either distance-based or rank-based weights, although



animals baby baby* bird bird* car car* clouds clouds* dog dog* female female*
Distance 41.1 13.1 14.8 13.6 17.1 31.1 48.9 74.6 66.2 22.3 24.1 52.0 47.9
Rank 42.6 11.8 16.3 14.8 18.2 30.9 47.3 74.4 67.4 23.3 25.6 52.4 49.3
SVM 48.6 13.3 18.9 20.3 22.7 34.6 50.2 84.8 77.4 29.7 33.6 56.3 53.8
Random 12.9 1.1 0.5 3.0 2.0 5.0 1.7 14.5 5.4 2.7 2.3 24.8 15.9

flower flower* food indoor lake male male* night night* people people* plant portrait
Distance 43.2 49.2 45.8 69.8 24.2 47.4 36.1 58.9 55.1 74.2 67.4 74.0 56.8
Rank 43.2 50.1 44.8 69.2 24.2 47.8 37.7 59.7 53.6 74.8 68.6 74.6 58.8
SVM 53.4 63.8 48.9 75.0 26.9 50.2 41.8 65.5 55.2 79.4 75.6 79.6 68.4
Random 7.4 4.4 4.0 33.5 3.0 23.9 14.2 10.3 2.5 41.3 31.1 34.8 15.6

portrait* river river* sea sea* sky struct. sunset transp. tree tree* water Mean
Distance 56.3 21.5 5.8 50.4 20.2 84.5 76.3 57.7 42.0 59.7 43.2 56.7 45.9
Rank 58.6 23.6 6.5 50.3 24.4 84.5 76.1 57.8 42.4 60.1 41.6 57.7 46.5
SVM 68.4 24.4 6.6 56.4 30.3 89.0 78.0 67.7 44.7 67.8 54.6 61.8 52.0
Random 15.1 3.7 0.6 5.3 0.8 31.0 40.4 8.4 11.9 18.3 2.7 13.1 12.3

Table 1: Comparison in terms of AP of TagProp with distance-based and rank-based weights, and SVMs.
Results for all 38 concepts are given, as well as their mean (last column).

for some concepts the scores differ up to 4% in terms of AP.
For all concepts, the SVM approach yields higher AP scores
than those obtained with TagProp, on average leading to a
5.5% higher AP score. In terms of BEP similar results are
obtained, in this case SVMs score lower than TagProp for
some classes, but on average SVMs still yield a 4.2% higher
score. When assessing annotation performance per image,
we find similar results. For SVMs we measured an average
iBEP of 61.7% and iAP of 71.9%, while for distance-based
TagProp we found an average iBEP of 58.1% and iAP of
68.3%, and TagProp using rank-based weights yielded 58.1%
and 68.5% respectively.

Of course, the higher performance of the SVM approach
comes at the cost of training a separate classifier per con-
cept. Including the 10-fold cross-validation over 5 values
of the regularization parameter this means we have to train
38×10×5 = 1900 SVM classifiers over 10125 training images
each (we use 90% of the data to train the SVMs and 10% to
train the sigmoid, and each cross validation round uses 90%
of the data again, so each SVM uses 0.9×0.9×12500 = 10125
training images). To learn the SVMs for all concepts with
libSVM took 11h40m. In comparison, TagProp is fast to
train as it learns one set of parameters shared among all
concepts, and does no require cross-validation to set regu-
larization parameters. To learn the TagProp model using
distance-based weights using K = 200 neighbours and in-
cluding the sigmoid, takes 1m47s for the 38 concepts and
12.500 training images. These run-times exclude visual fea-
ture extraction, and computation of pairwise distances.

4.3 Learning concepts with Flickr tags
In this section we investigate how we can use the Flickr

tags to learn our models. First, we use the tags as an ad-
ditional feature to train SVM classifiers, and the manual
annotation to define the relevance of the training images for
each concept. Second, we use the tags instead of the manual
annotation to define the relevance of the training images.

4.3.1 Using Flickr tags as features
To use the Flickr tags as features, we endow each im-

age with a binary vector of length 457 indicating the ab-
sence/presence of each tag. Since we know that the Flickr
tags are noisy, we also consider a 457 long vector with the
tag relevance predictions of TagProp with distance-based
weights. Since our implementation of TagProp exploits the

sparsity of the annotations, the model is learned in 2m35s
(compare to the 1m47s when learning from the 38 concepts).

We train the SVM models for each concept as before, but
using the different features, and combinations thereof. For
the new features, the tags and their TagProp predictions,
we use a linear kernel. When combining different features
we average the kernel matrices, which is equivalent to con-
catenating the corresponding feature vectors.

From the resulting AP scores in Table 2 we can make
the following observations. On average, using the Flickr
tags as features or their TagProp predictions performs sim-
ilar (43.7% and 43.6% respectively), and their combination
works surprisingly well (58.8%), which is better than the
visual features alone (52.4%). Adding the Flickr tags as
features helps significantly in all settings, whether we only
use visual features, TagProp features, or both. Adding the
TagProp features when the visual features are already used
helps little, whether or not the Flickr tags are also used.
We conclude that the TagProp features form a compact and
interpretable image representation, capturing a significant
amount of the information in the visual similarities used to
compute them.

4.3.2 Using Flickr tags instead of manual labels
Next, we consider learning our models directly from the

Flickr tags instead of the manual concept annotation. We
evaluate the learned models using the manual annotations of
test images for the 18 concepts (annotated in the non-strict
sense) that also appear among the 457 Flickr tags.

For TagProp we directly used the relevance estimates from
the model we trained on all 457 Flickr tags, i.e. to rank
the images for the concept ’animal’ we use the relevance
estimates for the Flickr tag ‘animal’. For SVM models we
replaced the manual concept annotations with an annotation
based on the absence or presence of the corresponding tag
and proceed as before.

In the first three columns of Table 3 we show the perfor-
mance obtained using TagProp and SVMs using the visual
features only. As expected, for all concepts the performance
drops significantly when learning from the noisy Flickr tags
instead of the manual concept annotations. However, for
all concepts performance is still significantly above chance
level. Perhaps surprisingly, in this case the TagProp models
perform better than the SVM classifiers in terms of average
AP, BEP, iAP, and iBEP. A possible explanation for these



animals baby baby* bird bird* car car* clouds clouds* dog dog* female female*
v 48.1 13.8 19.1 17.4 24.8 35.2 52.0 85.3 77.8 30.4 34.8 56.7 54.2
p 39.3 6.0 6.8 8.5 11.3 23.4 32.8 77.4 70.6 16.9 19.2 52.1 45.7
t 55.1 27.1 31.1 44.1 54.8 25.2 34.2 49.6 37.6 62.8 65.6 46.6 42.6
v+p 48.9 15.1 20.7 19.2 26.3 36.5 53.6 85.3 77.9 30.9 34.8 57.2 54.9
v+t 65.4 34.9 44.4 52.2 64.4 44.9 64.2 85.7 78.5 70.1 75.0 62.0 60.7
p+t 62.2 32.7 40.3 49.6 61.0 38.1 55.7 78.5 72.7 66.9 70.7 59.9 57.4
v+p+t 66.1 35.9 45.4 53.5 65.2 46.4 65.7 85.8 78.8 70.4 75.3 62.6 61.3

flower flower* food indoor lake male male* night night* people people* plant portrait
v 53.3 64.9 49.7 75.4 26.8 50.2 42.3 65.7 55.7 79.8 76.1 79.9 69.1
p 41.0 50.8 41.9 69.7 19.1 47.8 36.8 60.1 46.1 75.5 68.3 74.7 57.2
t 52.1 57.9 39.9 59.7 19.2 41.6 30.5 39.9 29.7 72.2 62.3 61.7 46.7
v+p 53.7 65.2 51.2 76.2 27.3 50.7 42.9 66.4 56.5 80.1 76.3 80.1 69.3
v+t 66.3 76.8 62.2 78.8 33.2 55.7 49.0 70.1 60.9 85.2 81.5 82.5 73.0
p+t 62.3 71.9 57.7 75.9 30.1 54.1 42.6 67.2 53.2 83.1 77.3 79.1 66.2
v+p+t 67.0 77.2 63.4 79.7 34.3 56.8 49.9 71.0 60.9 85.4 81.7 82.9 73.3

portrait* river river* sea sea* sky struct. sunset transp. tree tree* water Mean
v 69.1 24.7 6.9 57.9 29.2 89.2 78.3 67.9 45.2 68.1 54.8 62.7 52.4
p 56.7 15.1 2.4 49.0 18.8 84.4 76.4 60.3 38.4 60.1 41.1 54.6 43.6
t 46.2 29.5 4.5 43.6 14.0 67.5 69.8 39.7 33.0 39.5 29.1 53.6 43.7
v+p 69.2 25.7 7.0 57.9 29.2 89.4 78.8 68.2 45.6 68.2 55.1 63.1 53.0
v+t 72.8 39.5 16.4 66.4 35.5 90.4 81.8 68.4 54.2 69.7 59.3 73.7 63.3
p+t 65.8 35.8 11.1 62.3 29.2 86.8 81.4 63.5 50.4 64.1 49.5 70.1 58.8
v+p+t 73.1 40.2 16.3 66.4 36.8 90.7 82.6 69.1 55.0 70.4 59.9 74.2 64.0

Table 2: Comparison in terms of AP of SVM models that use visual features (v), Flickr tags (t), and their
predictions using TagProp (p), and combinations of these.

results lies in the noise in the training labels: as TagProp
has less parameters it is less likely to over-fit to this noise.
This is also coherent with the fact that the distance-based
weights perform better than rank-based weights in this case.

Finally, we also consider using the tag-based features when
learning SVMs from the Flickr tags. Note that in this case
we should exclude the tag from which we are training from
the feature set, otherwise we would obtain degenerate clas-
sifiers that uses a Flickr tag as perfect predictor for itself.
Apart from this issue, we train our SVM classifiers as be-
fore and present the AP scores in the remaining columns of
Table 3. Generally we see the same effect of feature com-
binations, except that in this case the combination of the
Flickr tags and the TagProp features performs worse than
using the visual features alone. When using all feature sets
the performance is comparable to that of the distance-based
TagProp model in terms of mean AP, but still worse in terms
of BEP, iAP and iBEP.

We note that the SVM approach might be improved using
other approaches to combine the visual and tag-based ker-
nels [7]. Similarly TagProp might be further improved by
exploiting the Flickr tags to define the neighbour weights.

5. CONCLUSION
We have presented TagProp, a weighted nearest neighbour

model for image annotation, and evaluated performance on
the MIR Flickr set. We compared to SVM classifiers learned
per concept, and considered both the use of manual annota-
tions and Flickr tags to learn our models. In our experiments
we show that TagProp can successfully combine different
similarity measures between images. This is consistent with
our earlier findings on other data sets [5, 9]. Using rank-
based and distance-based weights yields comparable perfor-
mance, and for either definition of the weights the addition
of a per-word logistic discriminant model significantly im-
proves performance.

In our comparison between TagProp and SVM classifiers
we found SVMs to perform better when trained from pre-
cise manual annotations, but to perform worse when using
the noisy Flickr tags as training labels. We think this is
due to the fact that TagProp has far fewer parameters than
the SVM approach, therefore TagProp is less suited to learn
a complex decision boundary from precise manual annota-
tion, but also less likely to over-fit to the noisy labels given
by the Flickr tags. Using both forms of supervision, in-
cluding Flickr tags as features improves the performance of
SVM classifiers, in particular when learning from the man-
ual annotations. Interestingly, when learning SVMs from
the manual annotations, the combination of the Flickr tags
and their TagProp predictions yield a performance above
that given by the visual features alone.

In future work we want to address the modeling of the cor-
relation between the presence of annotation terms, which is
currently not taken into account in our annotation models.
Furthermore, we want to explore learning models using ob-
jective functions that are geared towards optimising image
annotation performance rather than retrieval, see e.g. [2] for
recent ideas along these lines. The main difference with opti-
mization for retrieval is that it is not necessary that relevant
terms obtain a high score, but that it is sufficient that their
score is higher than the score for non-relevant terms.
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