
International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Face recognition from caption-based supervision

Matthieu Guillaumin · Thomas Mensink · Jakob Verbeek · Cordelia Schmid

Received: date / Accepted: date

Abstract In this paper, we present methods for face recog-
nition using a collection of images with captions. We con-
sider two tasks: retrieving all faces of a particular person in
a data set, and establishing the correct association between
the names in the captions and the faces in the images. This is
challenging because of the very large appearance variation
in the images, as well as the potential mismatch between
images and their captions.

For both tasks, we compare generative and discrimina-
tive probabilistic models, as well as methods that maximize
subgraph densities in similarity graphs. We extend them by
considering different metric learning techniques to obtain
appropriate face representations that reduce intra person vari-
ability and increase inter person separation. For the retrieval
task, we also study the benefit of query expansion.

To evaluate performance, we use a new fully labeled data
set of 31147 faces which extends the recent Labeled Faces in
the Wild data set. We present extensive experimental results
which show that metric learning significantly improves the
performance of all approaches on both tasks.

Keywords Face recognition · Metric Learning · Weakly
supervised learning · Face retrieval · Constrained clustering

1 Introduction

Over the last decade we have witnessed an explosive growth
of image and video data available both on-line and off-line,
through digitalization efforts by broadcasting services, news
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Fig. 1 Two example images with captions. Detected named entities are
in bold font, and detected faces are marked by yellow rectangles.

oriented media publishing online, or user-provided content
concentrated on websites such as YouTube and Flickr. The
appearance of these archives has resulted in a set of new
challenges for the computer vision community. The sheer
size of these archives makes it impossible to manually in-
dex the content with annotation terms needed for meaningful
keyword-based retrieval. Therefore, one of the challenges is
the need for tools that automatically analyze the visual con-
tent and enrich it with semantically meaningful annotations.
Due to the dynamic nature of such archives —new data is
added every day— the use of traditional fully supervised
machine learning techniques is less suitable. These would
require a sufficiently large set of hand-labeled examples of
each semantic concept that should be recognized from the
low-level visual features. Instead, methods are needed that
require less explicit supervision, ideally avoiding any hand-
labeling of images and making use of implicit forms of an-
notation.

Learning from weaker forms of supervision has become
an active and broad line of research (Barnard et al., 2003,
Bekkerman and Jeon, 2007, Fergus et al., 2005, Li et al.,
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Fig. 2 The extended YaleB data set includes illumination and pose
variations for each subject, but not other variations such as ones due
to expression.

2007). The crux of those systems is to exploit the relations
between different media, such as the relation between im-
ages and text, and between video and subtitles combined
with scripts (Barnard et al., 2003, Everingham et al., 2006,
Guillaumin et al., 2009a, Satoh et al., 1999, Sivic et al.,
2009, Verbeek and Triggs, 2007). The correlations that can
be automatically detected are typically less accurate – e.g.
images and text associated using a web search engine like
Google (Berg and Forsyth, 2006, Fergus et al., 2005) – than
supervised information provided by explicit manual efforts.
However, the important difference is that the former can be
obtained at a lower cost, and therefore from much larger
amounts of data, which may in practice outweigh the higher
quality of supervised information.

In this paper, we focus on face recognition using weak
supervision in the form of captions. See Figure 1 for illus-
trations. We will address two specific problems, the first is
to retrieve all the faces belonging to a specific person from
a given data set, and the second is to name all persons in
all images of a data set. The data set we use consists of im-
ages and captions from news streams, which are important
as they are major sources of information, and news articles
are published frequently. Identification of faces in news pho-
tographs is a challenging task, significantly more so than
recognition in the usual controlled setting of face recog-
nition: we have to deal with imperfect face detection and
alignment procedures, and also with great changes in pose,
expression, and lighting conditions, and poor image resolu-
tion and quality. To stress the difficulty of face recognition
in this setting, we show in Figure 2 images from the YaleB
data set (Georghiades et al., 2005), which are obtained in a
controlled way, compared to images from the Labeled Faces
in the Wild data set (Huang et al., 2007b) shown in Figure 3.

In this paper we consider the use of learned similarity
measures to compare faces for these two tasks. We use the
techniques we developed in Guillaumin et al. (2009b) for
face identification. Face identification is a binary classifica-
tion problem over pairs of face images: we have to deter-
mine whether or not the same person is depicted in the im-
ages. More generally, visual identification refers to deciding

Fig. 3 Several examples of face pairs of the same person from the
Labeled Faces in the Wild data set. There are wide variations in illumi-
nation, scale, expression, pose, hair styles, hats, make-up, etc.

whether or not two images depict the same object from a
certain class. The confidence scores, or a posteriori class
probabilities, for the visual identification problem can be
thought of as an object-category-specific dissimilarity mea-
sure between instances of the category. Ideally it is 1 for
images of different instances, and 0 for images of the same
object. Importantly, scores for visual identification can also
be applied for other problems such as visualisation (Nowak
and Jurie, 2007), recognition from a single example (Fei-
Fei et al., 2006), associating names and faces in images (as
done in this paper) or video (Everingham et al., 2006), or
people oriented topic models (Jain et al., 2007). The face
similarity measures can be learned from two types of su-
pervision. Either a set of faces labeled by identity can be
used, or a collection of face pairs that are labeled as con-
taining the same person twice, or two different people. The
similarity measures are learned on faces of a set of people
that is disjoint from the set of people that are used in the
people search and face naming tasks. In this manner we as-
sure that the learned similarity measures generalize to other
people, and are therefore more useful in practice. It is also
possible to learn the similarity measure directly from weakly
labeled data (Guillaumin et al., 2010), but the resulting mea-
sure achieves lower generalization performance.

This paper presents an integrated overview of our results
presented earlier (Guillaumin et al., 2008, 2009b, Mensink
and Verbeek, 2008). The main contribution consists in ex-
tending the earlier work by integrating and improving the fa-
cial similarity learning approach of Guillaumin et al. (2009b)
with the caption-based face recognition methods presented
in Guillaumin et al. (2008), Mensink and Verbeek (2008).
We propose a standardized evaluation protocol on a data
set that we make publicly available, and also recently used
in Guillaumin et al. (2010).
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In the following, we first review related work in Sec-
tion 2. We present the data set that we used for our tasks
in Section 3, as well as the name and face detection proce-
dures, and our facial feature extraction procedure. We then
continue in Section 4 with a discussion of several basic sim-
ilarity measures between the face representations, and also
detail methods to learn a similarity measure between faces
from labeled data. Methods that are geared toward retrieving
all the faces of a specific person are presented in Section 5.
In Section 6 we describe methods that aim at establishing all
name-face associations. An extensive collection of experi-
mental results that compare the different recognition meth-
ods and face representations is then considered in Section 7.
In Section 8, we end the paper by presenting our conclusions
and we identify lines of further research.

2 Related work

Learning semantic relations from weaker forms of supervi-
sion is currently an active and broad line of research. Work
along these lines includes learning correspondence between
keywords and image regions (Lazebnik et al., 2003, Ver-
beek and Triggs, 2007), and learning image retrieval and
auto-annotation with keywords (Barnard et al., 2003, Grang-
ier et al., 2006). In these approaches, images are labeled
with multiple keywords per image, requiring resolution of
correspondences between image regions and semantic cate-
gories. Supervision from even weaker forms of annotation
are also explored, e.g. based on images and accompanying
text (Bressan et al., 2008, Jain et al., 2007), and video with
scripts and subtitles (Everingham et al., 2006, Laptev et al.,
2008).

The earliest work on automatically associating names
and faces in news photographs is probably the PICTION
system (Srihari, 1991). This system is a natural language
processing system that analyzes the caption to help the vi-
sual interpretation of the picture. The main feature of the
system is that identification is performed only using face
locations and spatial constraints obtained from the caption.
No face similarity, description or characterization is used,
although weak discriminative clues (like male vs. female)
were included. Similar ideas have been successfully used
in, for instance, the Name-it system (Satoh et al., 1999), al-
though their work concerned face-name association in news
videos. The name extraction is done by localising names in
the transcripts and video captions, and, optionally, sound
track. Instead of simple still images, they extract face se-
quences using face tracking, so that the best frontal face of
each sequence can be used for naming. These frontal faces
are described using Eigenfaces method (Turk and Pentland,
1991). The face-name association can then be obtained with
additional contextual cues, e.g. candidate names should ap-

pear just before the person appears on the video, because
speeches are most often introduced by an anchor person.

Related work associating names to faces in an image in-
cludes the similarity-based approach of Zhang et al. (2004)
where face annotations are propagated for each individual
independently. A generative mixture model (Berg et al., 2004)
of the facial features in a database associates a mixture com-
ponent with each name. The main idea of this approach is to
perform a constrained clustering, where constraints are pro-
vided by the names in a document, and the assumption that
each person appears at most once in each image, which rules
out assignments of several faces in an image to the same
name. While in practice some violations of this assumption
occur, e.g. people that stand in front of a poster or mirror that
features the same person, there are sufficiently rare to be ig-
nored. Additionally, the names in the document provide a
constraint on which names may be used to explain the fa-
cial features in the document. A Gaussian distribution in a
facial feature space is associated with each name. The clus-
tering of facial features is performed by fitting a mixture of
Gaussians (MoG) to the facial features with the expectation-
maximization (EM) algorithm (Dempster et al., 1977), and
is analogous to the constrained k-means clustering approach
of Wagstaff and Rogers (2001).

Rather than learning a mixture model over faces con-
strained by the names in the caption, the reverse was con-
sidered in Pham et al. (2008). They clustered face descrip-
tors and names in a pre-processing step, after which each
name and each face are both represented by an index in a
corresponding discrete set of cluster indices. The problem
of matching names and faces is then reduced to a discrete
matching problem, which is solved using probabilistic mod-
els. The model defines correspondences between name clus-
ters and face clusters using multinomial distributions, which
are estimated using an EM algorithm.

The face naming problem has also been studied in an in-
teractive setting. Given an initial clustering the system asks
the user to indicate some of the identities, either on the im-
age level (Naaman et al., 2005) or on the face level (Tian
et al., 2007), to update the clustering. Both clustering meth-
ods take into account the co-occurrence of different people
in photographs as well as the uniqueness (a person is only
depicted once in an image).

Random Fields have also been studied to name all faces
in an image in, e.g., Anguelov et al. (2007), Stone et al.
(2008). Each face is a node in the graph and a random field
is solved either for each picture or for a group of pictures.
Unary potentials are used to describe the similarity between
a face and a name, and pairwise potentials are used to in-
clude a uniqueness prior and a co-occurrence score.

Previous work that considers retrieving faces of specific
people from caption-based supervision includes Ozkan and
Duygulu (2006, 2009), and ours (Guillaumin et al., 2008,
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Mensink and Verbeek, 2008). These methods perform a text-
based query over the captions, returning the documents that
have the queried name in the caption. The faces found in
the corresponding images are then further visually analyzed.
The assumption underlying these methods is that the re-
turned documents contain a large group of highly similar
faces of the queried person, and additional faces of many
other people appearing each just a few times. The goal is
thus to find a single coherent compact cluster in a space
that also contains many outliers. A graph-based method was
proposed in Ozkan and Duygulu (2006): nodes represent
faces, and edges encode similarity between faces. The faces
in the subset of nodes with maximum density are returned
as the faces representing the queried person. In Guillaumin
et al. (2008), Mensink and Verbeek (2008) we extended the
graph-based approach, and compared it to generative MoG
approach similar to that used for face naming, and a dis-
criminative approach that learns a classifier to recognize the
person of interest.

We found the performance of these methods to deterio-
rate strongly as the frequency of the queried person among
the faces returned after the text search drops below about
40%, contradicting their underlying assumption. In this case,
the faces of the queried person are obscured by many faces
of other people, some of which also appear quite often due
to strong co-occurrence patterns between people. To alle-
viate this problem, we proposed in Mensink and Verbeek
(2008) a method that explicitly tries to find faces of co-
occurring people and use them as ‘negative’ examples. The
names of co-occurring people are found by scanning the
captions that contain the person of interest, and counting
which other names appear most frequently. Thus, the name
co-occurrences are used to enlarge the set of faces that is vi-
sually analyzed: the initial set only contains those from im-
ages where the queried name appears, and the new set also
includes those from images with co-occurring people. This
is related to query expansion methods for document and im-
age retrieval (Buckley et al., 1995, Chum et al., 2007), where
query expansion is used to re-query the database to obtain
more similar documents or images. In the setting to name all
faces in an image, it has been proposed to use friend simi-
larities, based on a social network graph (Stone et al., 2008),
and on co-occurrences in a known set of identities (Naaman
et al., 2005).

In this paper we deploy our logistic discriminant metric
learning approach (LDML) (Guillaumin et al., 2009b) for
these two tasks. Metric learning has received a lot of atten-
tion. For recent work in this area see, e.g., Bar-Hillel et al.
(2005), Davis et al. (2007), Globerson and Roweis (2006),
Ramanan and Baker (2009), Weinberger et al. (2006), Xing
et al. (2004). Most methods learn a Mahalanobis metric based
on an objective function defined by means of a labelled train-
ing set, or from sets of positive (same class) and negative

(different class) pairs. The difference among these methods
mainly lies in their objective functions, which are designed
for their specific tasks, e.g. clustering (Xing et al., 2004), or
kNN classification (Weinberger et al., 2006). Some methods
explicitly need all pairwise distances between points (Glober-
son and Roweis, 2006), which makes them difficult to ap-
ply in large scale applications (say more than 10000 data
points). Among the existing methods, large margin nearest
neighbour (LMNN) metrics (Weinberger et al., 2006) and
information theoretic metric learning (ITML) (Davis et al.,
2007)), together with LDML, are state-of-the-art.

Metric learning is one of the numerous types of methods
that can provide robust similarity measures for the problem
of face and, more generally, visual identification. Recently
there has been considerable interest for such identification
methods (Chopra et al., 2005, Ferencz et al., 2008, Holub
et al., 2008, Jain et al., 2006, Kumar et al., 2009, Nowak
and Jurie, 2007, Pinto et al., 2009, Wolf et al., 2008). It is
noticeable that some of these approaches would not fit the
Metric Learning framework because they do not work with
a vectorial representation of faces. Instead, the similarity
measure between faces is evaluated by matching low-level
features between images, and this matching has to be per-
formed for any pair of images for which we need the sim-
ilarity score. Since this matching is usually computionally
expensive, computing pairwise distances of vectorial repre-
sentations of faces instead is typically orders of magnitude
faster.

3 Data sets, tasks and features

In this section, we describe the data sets we have used in our
work. These data sets, Labeled Faces in the Wild (Huang
et al., 2007b) and Labeled Yahoo! News (Guillaumin et al.,
2010), are the result of annotation efforts on subsets of the
Yahoo! News data set, with different tasks in mind. The for-
mer aims at developing identification methods, while the lat-
ter adds information about the structure of the data which
can be used for retrieval, clustering or other tasks.

The Yahoo! News database was introduced by Berg et al.
(2004), it was collected in 2002–2003 and consists of im-
ages and accompanying captions. There are wide variations
in appearances with respect to pose, expression, and illumi-
nation, as shown in two examples in Figure 1. Ultimately,
the goal was to automatically build a large data set of anno-
tated faces, so as to be able to train complex face recognition
systems on it.

3.1 Labeled Faces in the Wild

From the Yahoo! News data set, the Labeled Faces in the
Wild (Huang et al., 2007b) data set was manually built, us-
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ing the captions as an aid for the human annotator. It con-
tains 13233 face images labelled by the identity of the per-
son. In total 5749 people appear in the images, 1680 of them
appear in two or more images. The faces show a big variety
in pose, expression, lighting, etc., see Figure 3 for some ex-
amples. An aligned version of all faces is available, referred
to as “funneled”, which we use throughout our experiments.
This data set can be viewed as a partial ground-truth for the
Yahoo! News data set. Labeled Faces in the Wild has be-
come the de facto standard data set for face identification,
with new methods beging regularly added to the compari-
son. The data set comes with a division in 10 parts that can
be used for cross validation experiments. The folds contain
between 527 and 609 different people each, and between
1016 and 1783 faces. From all possible pairs, a small set of
300 positive and 300 negative image pairs are provided for
each fold. Using only these pairs for training is referred to as
the “image-restricted” paradigm; in this case the identity of
the people in the pairs can not be used. The “unrestricted”
paradigm is used to refer to training methods that can use
all available data, including the identity of the people in the
images.

3.2 Labeled Yahoo! News

With growing efforts towards systems that can efficiently
query data sets for images of a given person, or use the con-
straints given by documents to help face clustering (Guil-
laumin et al., 2008, Mensink and Verbeek, 2008, Ozkan and
Duygulu, 2006), it has become important for the commu-
nity to be able to compare those systems with a standardised
data set. We therefore introduced the Labeled Yahoo! News
data (Guillaumin et al., 2010) set and make it available on-
line for download1. On the original Yahoo! News data ob-
tained from Berg, we have applied the OpenCV implementa-
tion of the Viola-Jones face detector (Viola and Jones, 2004)
and removed documents without detections. We then ap-
plied a named entity detector (Deschacht and Moens, 2006)
to find names appearing in the captions, and also used the
names from the Labeled Faces in the Wild data set as a dic-
tionary for a caption filter to compensate for some missed
detections.

Our manual annotation effort on the 28204 documents
that contain at least one name and one face provided each
document with the following information:

1. The correct association of detected faces and detected
names.

2. For detected faces that are not matched to a name, the
annotations indicate which of the three following pos-
sibilities is the case: (i) The image is an incorrect face

1 Our data set is available at: http://lear.inrialpes.fr/
data/

Noelle Bush (C), daughter of Florida Governor Jeb Bush,
is joined by her brother, George P. Bush (L) and Bush
family attorney Pete Antonacci during her hearing in Or-
ange County, Florida court, July 19, 2002.

Fig. 4 Example of a document in the Labeled Yahoo! News data set.
Two faces were detected by the face detector (f1 and f2, shown in yel-
low), while a face was missed in the middle (for illustration purposes,
a red box has been hand-drawn, but f3 is not part of the annotation).
Three names have been detected in the caption, shown in bold, while
one was missed by the named entity detector (shown in italic). The
manual annotation consists in (1) associating f2 with George P. Bush,
(2) indicating that f1 depicts a person whose name was missed by the
named entity detector, and (3) that the face f3 for Noelle Bush was
missed by the face detector.

detection. (ii) The image depicts a person whose name
is not in the caption. (iii) The image depicts a person
whose name was missed by the named entity detector.

3. For names that do not correspond to a detected face, the
annotation indicates whether the face is absent from the
image or missed by the detector.

Finally, we also indicate if the document contains an unde-
tected face together with an undetected name. Although this
information is not used in our system, it would allow for
an efficient update of associations if we were to change the
face detector or named entity detector. Note that we do not
annotate the undetected faces with their bounding box. An
example of annotation is shown in Figure 4.

In order to be able to use learning algorithms while eval-
uating on a distinct subset, we divide the data set into two
completely independent sets. The test subset first includes
the images of the 23 persons that have been used in Guil-
laumin et al. (2008), Mensink and Verbeek (2008), Ozkan
and Duygulu (2006, 2009) for evaluating face retrieval from
text-based queries. This set is extended with documents con-
taining “friends” of these 23 persons, where friends are de-
fined as people that co-occur in at least one document. The
set of other documents, the training set, is pruned so that
friends of friends of queried people are removed. Thus, the
two sets are now independent in terms of identity of people
appearing in them. 8133 documents are lost in the process.

The test set has 9362 documents, 14827 faces and 1071
different people: because of the specific choice of queries

http://lear.inrialpes.fr/data/
http://lear.inrialpes.fr/data/
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Fig. 5 Illustration of our SIFT-based face descriptor. SIFT features
(128D) are extracted at 9 locations and 3 scales. Each row represents
a scale at which the patches are extracted: the top row is scale 1, the
middle row is scale 2 and the bottom row is scale 3. The first col-
umn shows the locations of the facial features, and the remaining nine
columns show the corresponding patches on which 128D SIFT descrip-
tors are computed. The descriptor is the concatenation of these 3 × 9

SIFT features.

(namely: Abdullah Gul, Roh Moo-huyn, Jiang Zemin, David
Beckham, Silvio Berlusconi, Gray Davis, Luiz Inacio Lula
da Silva, John Paul II, Kofi Annan, Jacques Chirac, Vladimir
Putin, Junichiro Koizumi, Hans Blix, Jean Chretien, Hugo
Chavez, John Ashcroft, Ariel Sharon, Gerhard Schroeder,
Donald Rumsfeld, Tony Blair, Colin Powell, Saddam Hus-
sein, George W. Bush), it has a strong bias towards news
of political events. The training set has 10709 documents,
16320 faces and 4799 different people: on the opposite, it
contains mostly news relating to sport events. Notably, the
average number of face images for each person is signifi-
cantly different between the two sets.

3.3 Face description

Face images are extracted using the bounding box of the
Viola-Jones detector and aligned using the funneling method
(Huang et al., 2007a) of the Labeled Faces in the Wild data
set. This alignment procedure finds a similarity transforma-
tion of the face images so as to minimize the entropy of the
image stack. On these aligned faces, we apply a facial fea-
ture detector (Everingham et al., 2006). The facial feature
detector locates nine points on the face using an appearance-
based model regularized with a tree-like constellation model.
For each of the nine points on the face, we calculate 128 di-
mensional SIFT descriptors at three different scales, yield-
ing a 9 × 3 × 128 = 3456 dimensional feature vector for
each face as in Guillaumin et al. (2009b). An illustration is
given in Figure 5. The patches at the nine locations and three
scales overlap enough to cover the full face. Therefore, we
do not consider adding other facial feature locations by in-
terpolation as in Guillaumin et al. (2008), where 13 points
were considered on a unique low scale.

There is a large variety of face descriptors proposed in
the literature. This includes approaches that extract features
based on Gabor filters or local binary patterns. Our work in
Guillaumin et al. (2009b) showed that our descriptor per-
forms similarly to recent optimized variants of LBP for face

recognition (Wolf et al., 2008) when using standard distances.
Our features are available with the data set.

4 Metrics for face identification

Given a vectorial representation xi ∈ IRD of a face image
(indexed by i), we now seek to design good metrics for iden-
tification.

For both the face retrieval tasks and the face naming
tasks, we indeed need to assess the similarity between two
faces with respect to the identity of the depicted person.
Intuitively, this means that a good metric for identification
should produce small distances – or higher similarity – be-
tween face images of the same individual, while yielding
higher values – or lower similarity – for different people.
The metric should suppress differences due to pose, expres-
sion, lighting conditions, clothes, hair style, sun glasses while
retaining the information relevant to identity. These metrics
can be designed in an ad-hoc fashion, set heuristically, or
learned from manually annotated data.

We restrict ourselves here to Mahalanobis metrics, which
generalize the Euclidean distance. The Mahalanobis distance
between xi and xj is defined as

dM(xi,xj) = (xi − xj)>M(xi − xj), (1)

where M ∈ IRD×D is a symmetric positive semi-definite
matrix that parametrizes the distance. Since M is positive
semi-definite, we can decompose it as M=L>L. Learning
the Mahalanobis distance can be equivalently performed by
optimising L, or M directly. L acts as a linear projection of
the original space, and the Euclidean distance after projec-
tion equals the Mahalanobis distance defined on the original
space by M.

First, as a baseline, we can fix M to be the identity ma-
trix. This results simply in the Euclidean distance (L2) be-
tween the vectorial representations of the faces.

We also consider setting L using principal components
analysis (PCA), which has also previously been used for
face recognition (Turk and Pentland, 1991). The basic idea
is to find a linear projection L that retains the highest possi-
ble amount of data variance. This unsupervised method im-
proves the performance of face recognition by making the
face representation more robust to noise. These projected
representations can also be more compact, allowing the use
of metric learning methods that scale with the square of the
data dimensionality.

Metric learning techniques are methods to learn M or
L in a supervised fashion. To achieve this, class labels of
images are assumed to be known. For image i, we denote yi
its class label. Images i and j form a positive pair if yi=yj ,
and a negative pair otherwise.

In the following paragraphs, we describe three metric
learning algorithms: large margin nearest neighbors (LMNN,
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Weinberger et al. (2006)), information theoretic metric learn-
ing (ITML, Davis et al. (2007)), and logistic discriminant
based metric learning (LDML, Guillaumin et al. (2009b)).
We also present an extension of LDML for supervised di-
mensionality reduction (Guillaumin et al., 2010).

4.1 Large margin nearest neighbour metrics

Recently, Weinberger et al. (2006) introduced a metric learn-
ing method, that learns a Mahalanobis distance metric de-
signed to improve results of k nearest neighbour (kNN) clas-
sification. A good metric for kNN classification should make
for each data point the k nearest neighbours of its own class
closer than points from other classes. To formalize, we de-
fine target neighbours of xi as the k closest points xj with
yi = yj , let ηij = 1 if xj is a target neighbour of xi, and
ηij = 0 otherwise. Furthermore, let ρij = 1 if yi 6= yj , and
ρij = 0 otherwise. The objective function is

ε(M) =
∑
i,j

ηijdM(xi,xj)

+
∑
i,j,l

ηijρil [1 + dM(xi,xj)− dM(xi,xl)]+ , (2)

where [z]+ = max(z, 0). The first term of this objective
minimises the distances between target neighbours, whereas
the second term is a hinge-loss that encourages target neigh-
bours to be at least one distance unit closer than points from
other classes. The objective is convex in M and can be min-
imised using sub-gradient methods under the constraint that
M is positive semi-definite, and using an active-set strategy
for the constraints. We refer to metrics learned in this man-
ner as Large Margin Nearest Neighbour (LMNN) metrics.

Rather than requiring pairs of images labelled positive
or negative, this method requires labelled triples (i, j, l) in
which i and j are target neighbours, but i and l should not be
neighbours. In practice we apply this method2 using labelled
training data (xi, yi), and implicitly use all pairs although
many never appear as active constraints.

The cost function is designed to yield a good metric for
kNN classification, and does not try to make all positive
pairs have smaller distances than negative pairs. Therefore,
directly applying a threshold on this metric for visual iden-
tification might not give optimal results but they are never-
theless very good. In pratice, the value of k did not strongly
influence the results. We therefore kept the default value pro-
posed by the authors of the original work (k = 3).

2 We used code available at http://www.weinbergerweb.
net/.

4.2 Information theoretic metric learning

Davis et al. (2007) have taken an information theoretic ap-
proach to optimize M under a wide range of possible con-
straints and prior knowledge on the Mahalanobis distance.
This is done by regularizing the matrix M such that it is
as close as possible to a known prior M0. This closeness
is interpreted as a Kullback-Leibler divergence between the
two multivariate Gaussian distributions corresponding to M
and M0: p(x;M) and p(x;M0). The constraints that can
be used to drive the optimization include those of the form:
dM(xi,xj) ≤ u for positive pairs and dM(xi,xj) ≥ l for
negative pairs, where u and l are constant values. Scenar-
ios with unsatisfiable constraints are handled by introducing
slack variables ξ = {ξij} and using a Lagrange multiplier γ
that controls the trade-off between satisfying the constraints
and using M0 as metric. The final objective function equals

min
M≥0,ξ

KL(p(x;M0)||p(x;M))) + γ · f(ξ, ξ0) (3)

s.t. dM(xi,xj) ≤ ξij for positive pairs

or dM(xi,xj) ≥ ξij for negative pairs,

where f is a loss function between ξ and target ξ0 that con-
tains ξ0ij = u for positive pairs and ξ0ij = l for negative
pairs.

The parameters M0 and γ have to be provided, although
it is also possible to resort to cross-validation techniques.
Usually, M0 can be set to the identity matrix.

The proposed algorithm scales with O(CD2) where C
is the number of constraints on the Mahalanobis distance.
Since we want to separate positive and negative pairs, we
define N2 constraints of the form dM(xi,xj)≤ b for posi-
tive pairs and dM(xi,xj)≥ b for negative pairs, and we set
b = 1 as the decision threshold3. The complexity is therefore
O(N2D2).

4.3 Logistic discriminant-based metric learning

In Guillaumin et al. (2009b) we proposed a method, simi-
lar in spirit to Davis et al. (2007), that learns a metric from
labelled pairs. The model is based on the intuition that we
would like the distance between images in positive pairs,
i.e. images i and j such that yi= yj (we note tij =1), to be
smaller than the distances corresponding to negative pairs
(tij = 0). Using the Mahalanobis distance between two im-
ages, the probability pij that they contain the same object is
defined in our model as

pij = p(tij |xi,xj ;M, b) = σ(b− dM(xi,xj)), (4)

where σ(z) = (1+exp(−z))−1 is the sigmoid function and
b a bias term. Interestingly for the visual identification task,

3 We used code available at http://www.cs.utexas.edu/
users/pjain/itml/.

http://www.weinbergerweb.net/
http://www.weinbergerweb.net/
http://www.cs.utexas.edu/users/pjain/itml/
http://www.cs.utexas.edu/users/pjain/itml/
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the bias directly works as a threshold value and is learned
together with the distance metric parameters.

The direct maximum likelihood estimation of M and b
is a standard logistic discriminant model (Guillaumin et al.,
2009b), which allows convex constraints to be applied us-
ing e.g. the projected gradient method (Bertsekas, 1976) or
interior point methods to enforce positive semi-definiteness.
This is done by performing an eigenvalue decomposition of
M at each iteration step, which is costly. Maximum likeli-
hood estimation of L instead of M has the advantage of us-
ing simple gradient descent. Additionally, L ∈ IRd×D need
not be a square matrix, and in the case of d < D a super-
vised dimensionality reduction is performed. Therefore, in
the following, we optimize L, as in Guillaumin et al. (2010).
4

The log-likelihood of the observed pairs (i, j), with prob-
ability pij and binary labels tij , is

L =
∑
i,j

tij log pij + (1− tij) log(1− pij) (5)

∂L
∂L

= L
∑
i,j

(tij − pij)(xi − xj)(xi − xj)>. (6)

When all the pairwise distances of a data set are considered,
we can rewrite the gradient as
∂L
∂L

= 2LXHX> (7)

where X = [xi] ∈ IRD×N and H = [hij ] ∈ IRN×N with
hii=

∑
j 6=i(tij − pij) and hij = pij − tij for j 6= i.

In Figure 6, we show the data distribution of two indi-
viduals after projecting their face descriptors on a 2D plane,
comparing supervised dimensionality reduction learned on
the training set of the Labeled Yahoo! News data set and un-
supervised PCA. As we can see, supervised dimensional-
ity reduction is a powerful tool to grasp in low-dimensional
spaces the important discriminative features useful for the
identification task.

5 Retrieving images of specific people

The first problem we consider is retrieving images of people
within large databases of captioned news images. Typically,
when searching for images of a certain person, a system (i)
queries the database for captions containing the name, (ii)
finds the set of faces in those images given a face detec-
tor, and (iii) ranks the faces based on (visual) similarity, so
that the images of the queried person appear first in the list.
An example of a system which uses the first two stages is
Google Portrait (Marcel et al., 2007).

As observed in Guillaumin et al. (2008), Mensink and
Verbeek (2008), Ozkan and Duygulu (2006), Sivic et al.

4 Our code is available at http://lear.inrialpes.fr/
software/

(2009), approaches which also use the third stage generally
outperform methods based only on text. The assumption un-
derlying stage (iii) is that the faces in the result set of the
text-based search consist of a large group of highly similar
faces of the queried person, plus faces of many other people
appearing each just a few times. The goal is thus to find a
single coherent compact cluster in a space that also contains
many outliers.

In the rest of this section we present methods from Guil-
laumin et al. (2008), Mensink and Verbeek (2008) to per-
form the ranking based on visual similarities. We present
three methods: a graph-based method (Section 5.1), a method
based on a Gaussian mixture model (Section 5.2), and a dis-
criminant method (Section 5.3). In Section 5.4 we describe
the idea of query expansion, adding faces of frequent co-
occuring persons to obtain a notion of whom we are not
looking for. In our experiments, we will compare these meth-
ods using similarities originating from both unsupervised
and learned metrics.

5.1 Graph-based approach

In the graph-based approach of Guillaumin et al. (2008),
Ozkan and Duygulu (2006), faces are represented as nodes
and edges encode the similarity between two faces. The as-
sumption that faces of the queried person occur relatively
frequent and are highly similar, yields a search for the dens-
est sub graph.

We define a graph G = (V,E) where the vertices in
V represent faces and edges in E are weighted according to
similaritywij between faces i and j. To filter our initial text-
based results, we search for the densest subgraph S ⊆ V , of
G, where the density f(S) of S is given by

f(S) =

∑
i,j∈S wij

|S|
. (8)

In Ozkan and Duygulu (2006), a greedy 2-approximate
algorithm is used to find the densest component. It starts
with the entire graph as subset (S = V ), and iteratively re-
moves nodes until |S| = 1. At each iteration, the node with
the minimum sum of edge weights within S is removed, and
f(Si) is computed. The subset Si with the highest encoun-
tered density, which is at least half of the maximal density
(Charikar, 2000), is returned as the densest component.

In Guillaumin et al. (2008), we have introduced a modi-
fication, to incorporate the constraint that a face is only de-
picted once in an image. We consider only subsets S with
at most one face from each image, and initialise S with the
faces that have the highest sum of edge weights in each im-
age. The greedy algorithm is used to select a subset of these
faces. However, selecting another face from an image might
now yield a higher density for S than the initial choice. Con-
sequently, we add a local search, which proceeds by iterating

http://lear.inrialpes.fr/software/
http://lear.inrialpes.fr/software/
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2D PCA projection

2D PCA projection

2D LDML projection

2D LDML projection

Fig. 6 Comparison of PCA and LDML for 2D projections. The data of only two co-occurring persons are shown: Britney Spears and Jennifer
Aniston. The identity labels given in the central part of the figure show that LDML projections better separate the two persons although the
embedding seems less visually coherent than PCA.

over the images and selecting the single face, if any, which
yields the highest density. The process terminates when all
nodes have been considered without obtaining further in-
creases.

We define the weights wij following Guillaumin et al.
(2008) and use the distances between the face representa-
tions to build an ε-neighbour graph or a k-nearest neigh-
bours graph. In ε-graphs, weights are set to wij = 1 if the
distance between i and j is below a certain threshold ε, and
0 otherwise. In k-nearest neighbours graphs, wij = 1 if i is
among the k closest points to j or vice-versa.

5.2 Gaussian mixture model approach

In the Gaussian mixture model approach, the search problem
is viewed as a two-class clustering problem, where the Gaus-
sian mixture is limited to just two components, c.f . Guillau-
min et al. (2008): one foreground model representing the
queried person, and one generic face model.

For each image in the result set of the text-based query,
we introduce an (unknown) assignment variable γ to repre-
sent which, if any, face in the image belongs to the queried
person. An image with F face detections has (F + 1) pos-
sible assignments: selecting one of the F faces, or none
(γ = 0).

Marginalizing over the assignment variable γ, a mixture
model is obtained over the features of the detected faces

F = {x1, . . . ,xF }

p(F) =
F∑
γ=0

p(γ)p(F|γ), (9)

p(F|γ) =
F∏
i=1

p(xi|γ), (10)

p(xi|γ) =
{
pBG(fi) = N (xi;µBG, ΣBG) if γ 6= i

pFG(fi) = N (xi;µFG, ΣFG) if γ = i
(11)

We use a prior over γ which is uniform over all non-zero
assignments, i.e. p(γ = 0) = π and p(γ = i) = (1− π)/F
for i ∈ {1, . . . , F}. To reduce the number of parameters,
we use diagonal covariance matrices for the Gaussians. The
parameters of the generic background face model are fixed
to the mean and variance of the faces in the result set of
the text-based query. Although using a mixture of Gaus-
sians would better model generic faces, we use only one
Gaussian to avoid that a component of the mixture mod-
els the foreground class. We estimate the other parameters
{π, µFG, ΣFG}, using the EM algorithm. The EM algorithm
is initialised in the E-step by using uniform responsibili-
ties over the assignments, thus emphasizing faces in doc-
uments with only a few other faces. After parameter opti-
mization, we use the assignment maximizing p(γ|F) to de-
termine which, if any, face represents the queried person.

5.3 Discriminant method

The motivation for using a discriminant approach is to im-
prove over generative approaches like the Gaussian mixture,
while avoiding the explicit computation of the pairwise sim-
ilarities as in Guillaumin et al. (2008), Ozkan and Duygulu
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(2006), which is relatively costly when the query set con-
tains many faces. We chose to use sparse multinomial logis-
tic regression (SMLR, Krishnapuram et al. (2005)) since we
are using high-dimensional face features.

Still denoting features with x, and class labels with y ∈
{FG,BG}, the conditional probability of y given x is de-
fined as a sigmoid over linear score functions

p(y = FG|x) = σ(w>FGx), (12)

where σ(·) is defined as in Section 4.3. The likelihood is
combined with a Laplace prior which promotes the sparsity
of the parameters: p(w) ∝ exp(−λ‖w‖1), where ‖ · ‖1 de-
notes the L1 norm, and λ is set by cross-validation.

To learn the weight vectors we use the noisy set of posi-
tive examples (y = FG) from the result set of the text-based
query and a random sample of faces from the databases as
negative examples (y = BG). To take into account that each
image in the query may contain at most one face of the
queried person, we alter the learning procedure as follows.
We learn the classifier iteratively, starting with all faces in
the result set of the text-based query as positive examples,
and at each iteration transferring the faces that are least likely
to be the queried person from the positive to the negative set.
At each iteration we transfer a fixed number of faces, which
could involve several faces from a document as long as there
remains at least one face from each document in the positive
set. The last condition is necessary to avoid that a trivial
classifier will be learned that classifies all faces as negative.

Once the classifier weights have been learned, we score
the (F + 1) assignments with the log-probability of the cor-
responding classifier responses, e.g. for γ = 1 the score
would be ln p(y1 = FG|x1) +

∑F
i=2 ln p(yi = BG|xi).

5.4 Query expansion

Using ideas from query expansion, the search results can
be considerably improved, as we showed in Mensink and
Verbeek (2008). The query expansion framework brings us
somehow closer to the complete name-face association prob-
lem discussed in Section 6. The underlying observation is
that errors in finding the correct faces come from the confu-
sion with co-occuring people.

For example, suppose that in captions for the query Tony
Blair the names George Bush and Gordon Brown occur of-
ten. By querying the system for George Bush and Gordon
Brown we can then rule out faces in the result set from the
text-based query for Tony Blair that are very similar to the
faces returned for George Bush or Gordon Brown. See Fig-
ure 7 for a schematic illustration of the idea.

We therefore extend the result set of the text-based query
by querying the database for names that appear frequently
together with the queried person; we refer to these people as

“friends” of the queried person. For each friend we use only
images in which the queried person does not appear in the
caption. We use at most 15 friends for a query, and for each
friend there should be at least 5 images.

It is not obvious to exploit this idea in the graph-based
approach using the densest component. One idea would be
to add faces of friends in the graph, and only add nega-
tive edge weights between faces in the query expansion and
faces obtained using the original query. However, since the
graph density depends only on the edges between the se-
lected nodes, this yields the same solution as in the original
graph (selecting a face from the expansion can only decrease
the density due to the negative edge weights). Potentially, we
could benefit from query expansion by finding concurrently
a densest component for the queried person and each of its
friends: essentially this is the idea that is explored in Section
6 to establish all name-face associations. In the current sec-
tion we describe the use of query expansion in the Gaussian
mixture and discriminative approaches.

5.4.1 Query expansion for Gaussian mixture filtering

The first way to use the query expansion in the Gaussian
mixture model is to fit the background Gaussian to the query
expansion instead of the query set. So the background Gaus-
sian will be biased towards the “friends” of the queried per-
son, and the foreground Gaussian is less likely to lock into
one of the friends.

The second way to use query expansion, is to create
a mixture background model, this forms a more detailed
query-specific background model. For each friend n among
the N friends, we apply the method without query expan-
sion while excluding images that contain the queried per-
son in the caption. These “friend” foreground Gaussians are
added to the background mixture, and we include an addi-
tional background Gaussian

pBG(f) =
1

N + 1

N∑
n=0

N (x;µn, Σn) , (13)

where n = 0 refers to the generic background model. We
proceed as before, with a fixed pBG and using the EM algo-
rithm to find pFG and the most likely assignment γ in each
image.

5.4.2 Query expansion for linear discriminant filtering

The linear discriminant method presented in Section 5.3 uses
a random sample from the database as negative examples to
discriminate from the (noisy) positive examples in the query
set. The way we use query expansion here is to replace this
random sample with faces found when querying for friends.
When there are not enough faces in the expansion set (we
require at least as many faces as the dimensionality to avoid



11

Fig. 7 Schematic illustration of how friends help to find people. The distribution of face features obtained by querying captions for a name (left),
the query expansion with color coded faces of four people that co-occur with the queried person (middle), and how models of these people help to
identify which faces in the query set are not the queried person (right).

trivial separation of the classes), we use additional randomly
selected faces.

6 Associating names and faces

In this section we consider associating names to all the faces
in a database of captioned news images. For each face we
want to know to which name in the caption it corresponds,
or possibly that it corresponds to none of them: a null assign-
ment. In this setting, we can use the following constraints:
(i) a face can be assigned to at most one name, (ii) this name
must appear in the caption, and (iii) a name can be assigned
to at most one face in a given image.

This task can be thought of as querying simultaneously
for each name using a single-person retrieval method which
would comply with (ii) and (iii). But doing so in a straight-
forward manner, the results could violate constraint (i). This
approach would also be computationally expensive if the
data set contains thousands of different people, since each
face is processed for each query corresponding to the names
in the caption. Another benefit of resolving all name-face
associations together is that it will better handle the many
people that appear just a few times in the database, say less
than 5. For such rare people, the methods in Section 5 are
likely to fail as there are too few examples to form a clear
cluster in the feature space.

Moreover, the discriminative approach for retrieval is
impractical to adapt here. A straghtforward model would re-
place Equation 12 with a multi-class soft-max. This would
imply learningD weights for each of the classes, i.e. people.
For rare people, this approach is likely to fail.

Below, we describe the graph-based approach presented
in Guillaumin et al. (2008) in Section 6.1, and the constrained
mixture modeling approach of Berg et al. (2004) in Sec-
tion 6.2. Both methods try to find a set Sn of faces to as-
sociate to each name n, the task is therefore seen as a con-
strained clustering problem.

6.1 Graph-based approach

In the graph-based approach to single-person face retrieval,
the densest subgraph S was searched in the similarity graph
G obtained from faces returned by the text-based query. We
extend this as follows: the similarity graph G is now com-
puted considering all faces in the dataset. In this graph, we
search simultaneously for all subgraphs Sn corresponding
to names, indexed by n.

As already noted, the number of example faces for dif-
ferent people varies greatly, from just one or two to hun-
dreds. As a result, optimising the sum of the densities of
subgraphs Sn leads to very poor results, as shown in Guil-
laumin et al. (2008). Using the sum of the densities tends
to assign an equal number of faces to each name, as far as
allowed by the constraints, and therefore does not work well
for very frequent and rare people. Instead we maximise the
sum of edge weights within each subgraph

F ({Sn}) =
∑
n

∑
i,j∈Sn

wij . (14)

Note that when wii = 0 this criterion does not differentiate
between empty clusters and clusters with a single face. To
avoid clusters with a single associated face, for which there
are no other faces to corroborate the correctness of the as-
signment, we set wii to small negative values.

Then, the subgraphs Sn can be obtained concurrently by
directly maximizing Eq. (14), while preserving the image
constraints. Finding the optimal global assignment is com-
putationally intractable, and we thus resort to approximate
methods. The subgraphs are initialized with all faces that
could be assigned, thus temporarily relaxing constraint (i)
and (iii), but keeping (ii). Then we iterate over images and
optimise Eq. (14) per image. As a consequence, (i) and (iii)
are progressively enforced. After a full iteration over im-
ages, constraints (i), (ii) and (iii) are correctly enforced. The
iteration continues until a fixed-point is reached, which takes
in practice 4 to 10 iterations.

The number of admissible assignments for a document
withF faces andN names is

∑min(F,N)
p=0 p!

(
F
p

)(
N
p

)
, and thus
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quickly becomes impractically large. For instance, our fully-
labeled data set contains a document with F = 12 faces and
N = 7 names, yielding more than 11 million admissible
assignments. Notably, the five largest documents account for
more than 98% of the number of admissible assignments to
be evaluated over the full dataset.

Given the fact that assignments share many common
sub-assignments, a large efficiency gain can be expected by
not re-evaluating the shared sub-assignments. We therefore
introduced in Guillaumin et al. (2008) a reduction of the op-
timisation problem to a well-studied minimum cost match-
ing in a weighted bipartite graph (Cormen et al., 2001). This
modelling takes advantage of this underlying structure and
can be implemented efficiently. Its use is limited to objec-
tives that can be written as a sum of “costs” c(f, n) for as-
signing face f to name n. The corresponding graphical rep-
resentation is shown in Figure 8.

The names and faces problem differs from usual bipar-
tite graph matching problem because we have to take into
account null assignments, and this null value can be taken
by any number of faces in a document. This is handled by
having as many null nodes as there are faces and names. A
face f can be paired with any name or its own copy of null,
which is written f , and reciprocally, a name n can be paired
with any face or its own copy of null, written n. A pairing
between f and n will require the pairing of n and f be-
cause of document constraints. The weights of the pairings
are simply the costs of assigning a face fi to the subgraph
Sn, i.e. −

∑
fj∈Sn

wij , or to null.
A bipartite graph matching problem is efficiently solved

using the Kuhn-Munkres algorithm (also known as the Hun-
garian algorithm) which directly works on a cost matrix. The
cost matrix modeling our document-level optimization is a
squared matrix with n+ f rows and columns where the ab-
sence of edge is modeled with infinite cost. The rows repre-
sent faces and null copies of names, while columns represent
names and null copies of faces. See Figure 9 for a exam-
ple cost matrix modeling our matching problem. It is then
straightforward to obtain the minimum cost and the corre-
sponding assignment, as highlighted in the example matrix.

In Figure 10 we show how the processing time grows
as a function of the number of admissible assignments in a
document for the Kuhn-Munkres algorithm compared to a
“brute-force” loop over all admissible assignments. For ref-
erence, we also include the min-cost max-flow algorithm of
Guillaumin et al. (2008), but it is slower than Kuhn-Munkres
because the solver is more general than bipartite graph match-
ing.

6.2 Gaussian mixture model approach

In order to compare to previous work on naming faces in
news images (Berg et al., 2004), we have implemented a

f1 f2 n1 n2 n3

n1 n2 n3 f1 f2

c(f, n)

Fig. 8 Example of the weighted bipartite graph corresponding to a
document with two faces and three names. For clarity, costs are not
indicated, and edges between vertices and their null copies are dotted.
An example of a matching solution is given with the highlighted lines,
it is interpreted as assigning face f1 to name n3, f2 to n1, and not
assigning name n2.

266664
c(f1, n1) c(f1, n2) c(f1, n3) c(f1, f1) ∞
c(f2, n1) c(f2, n2) c(f2, n3) ∞ c(f2, f2)

c(n1, n1) ∞ ∞ c(n1, f1) c(n1, f2)

∞ c(n2, n2) ∞ c(n2, f1) c(n2, f2)

∞ ∞ c(n3, n3) c(n3, f1) c(n3, f2)

377775

Fig. 9 Example of the 5×5 cost matrix representing the bipartite graph
matching formulation of document-level optimization for the Kuhn-
Munkres algorithm, for a document with two faces and three names.
The costs c(fi, nj) are set to the negative sum of similarities from fi

to vertices in the subgraph Snj , c(fi, fi) are set to a constant threshold
value θ, and c(nj , ·) are set to zero. For c(nj , nj), this is because we
do not model any preference for using or not certain subgraphs. Infinite
costs account for absence of vertex. The same solution as in Figure 8
is highlighted.
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Fig. 10 Average processing time of the three algorithms with respect
to the number of admissible assignments in documents. The average is
computed over 5 runs of randoms costs, and over all documents that
have the same number of admissible assignments. The Kuhn-Munkres
algorithm combines low overhead and slow growth with document
complexity. Note that there is a log scale on both axes.
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constrained mixture model approach similar to the genera-
tive model presented in Section 5.2. We associate a Gaussian
density in the feature space with each name, and an addi-
tional Gaussian is associated with null. The parameters of
the latter will be fixed to the mean and variance of the en-
semble of all faces in the data set, while the former will be
estimated from the data. The model for an image with faces
F = {x1, . . . ,xF } is the following

p(F) =
∑
γ

p(γ)p(F|γ) (15)

p(F|γ) =
F∏
i=1

p(xi|γ) (16)

p(xi|γ) = N (xi;µn, Σn) (17)

where n is the name (or null) as given by the assignment
(xi, n) ∈ γ. Given the assignment we have assumed the
features xi of each face fi to be independently generated
from the associated Gaussian. The prior on γ influences the
preference of null assignments. Using parameter θ ∈ IR, we
define

p(γ) =
exp(−nγθ)∑
γ′ exp(−nγ′θ)

∝ exp(−nγθ) (18)

where nγ is the number of null assignments in γ. For θ = 0,
the prior is uniform over the admissible assignments.

We use Expectation-Maximisation to learn the maximum
likelihood parameters µn, Σn and γ from the data. This re-
quires computing the posterior probability p(γ|F) for each
possible assignment γ for each image in the E-step, which is
intractable. Instead, we constrain the E-step to selecting the
assignment with maximum posterior probability. This pro-
cedure does not necessarily lead to a local optimum of the
parameters, but is guaranteed to maximize a lower bound
on the data likelihood (Neal and Hinton, 1998). Moreover,
compared to an expected assignment, the a posteriori maxi-
mum likelihood assignment defines a proper naming of the
faces in the documents.

This model is straightforwardly framed into the bipar-
tite graph matching formulation. The costs c(f, n) are set to
− lnN (x;µn, Σn), where x represents face f in the feature
space, and the cost of not associating a face to a name is
c(f, f) = − lnN (x;µnull, Σnull) + θ. Null assignments are
favored as θ decreases.

The generative model in Berg et al. (2004) incorporates
more information from the caption. We leave this out here,
so we can compare directly with the graph-based method.
Caption features can be incorporated by introducing addi-
tional terms that favor names of people who are likely to
appear in the image based on textual analysis, see e.g. Jain
et al. (2007).

7 Experimental results

We present our experimental results in three parts. In the
first, we use the Labeled Faces in the Wild data set to study
the influence of parameters of the face descriptor and learned
similarity measures. Then, using our Labeled Yahoo! News
data set, we evaluate our different methods for retrieval of
faces, and associating names and faces. In these experiments,
we also consider the impact of using learned metrics for
these tasks.

7.1 Metrics for face similarity

In this section we analyse the performance of our face de-
scriptor with respect to its main parameters. This is done on
Labeled Faces in the Wild, to avoid overfitting on our data
set and tasks. Evaluation on the Labeled Faces in the Wild
data set is done in the following way. For each of the ten
folds defined in the data set, the distance between the 600
pairs is computed after optimizing it on the nine other folds,
when applicable. This corresponds to the “unrestricted” set-
ting, where the faces and their identities are used to form
all the possible negative and positive pairs. The Equal Er-
ror Rate of the ROC curve over the ten folds is then used as
accuracy measure, see Huang et al. (2007b).

The following parameters are studied:

1. The scales of the descriptor. We compare the perfor-
mance of each individual scale (see Figure 5) indepen-
dently, and their combination.

2. The dimensionality of the descriptor. Except for the Eu-
clidean distance, using more than 500 dimensions is im-
practical, since metric learning involves algorithms that
scale asO(D2) whereD is the data dimensionality. More-
over, we can expect to overfit when trying to optimize
over a large number of parameters. Therefore, we com-
pared in Figure 11 the performance of metric learning al-
gorithms by first reducting the data dimensionality using
PCA, to 35, 55, 100, 200 and 500 dimensions. LDML is
also able to learn metrics with this reduced dimensional-
ity directly.

3. Metrics for the descriptor. We compare the following
measures: Euclidean distance (L2), Euclidean distance
after PCA (PCA-L2), LDML metric after PCA (PCA-
LDML), LMNN metric after PCA (PCA-LMNN), ITML
metric after PCA (PCA-ITML), and finally Euclidean
distance after low-rank LDML projection (LDML-L2).

In Figure 11, we present the performance on Labeled
Faces in the Wild of the different metrics for each individual
scales of the descriptor, as a function of the data dimension-
ality. As a first observation, we note that all the learned met-
rics perform much better than the unsupervised metrics like
L2 and PCA-L2. The difference of performance between
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Fig. 11 Comparison of methods for the three scales of the face de-
scriptor and the concatenated descriptor of all three scales. We show
the accuracy of the projection methods with respect to the dimension-
ality, except for L2 where it is irrelevant. Scales 2 and 3 appear more
discriminative than scale 1 using learned metrics, and the concatena-
tion brings an improvement. Except for scale 1, LDML-L2 performs
best on a wide range of dimensionalities.
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Fig. 12 Accuracy of LDML projections over a wide range of space
dimensionalities, for scale 3, the combination of scale 2 and 3, and the
three scales.

learned metrics is smaller than the gap between learned met-
rics and unsupervised ones.

When comparing performance obtained with the differ-
ent scales, we see that scales 2 and 3 perform similarly, and
better than scale 1. The combination of the scales brings an
improvement over the individual scales.

From Figure 11, we also observe that metric learning
methods benefit from pre-processing with larger PCA di-
mensionalities up to 200 dimensions. For low dimension-
alities, the methods are limited by the weak discriminative
power of PCA. We can observe a hierarchy of methods:
PCA-LDML performs better than PCA-LMNN, which itself
performs better then PCA-ITML. But the difference is rarely
more than 2% between PCA-ITML and PCA-LDML below
200 dimensions. Performances seem to decrease when the
data dimensionality is above 200, which might be due to
overfitting. For ITML, the drop can be explained by unop-
timized code which required early stopping in the optimisa-
tion. Keeping 100 to 200 PCA dimensions appears as a good
trade-off between dimensionality reduction and discrimina-
tive power. When using LDML for supervised dimensional-
ity reduction, the performance is maintained at a very good
level when the dimension is reduced, and typically LDML-
L2 is the best performing method in low dimensions.

The performance of LDML-L2 for dimensionalities rang-
ing from 1 to 500 can be seen in Figure 12, with an illustra-
tion already shown in Figure 6. We show the influence of tar-
get space dimensionality on performance for the best scale
(the third), the two best scales (second and third) and all
three scales together. We can clearly observe that combining
scales benefits the performance, at the expense of a higher
dimensional input space. Notably, adding scale 1 does not
seem to have any significant effect on performance. The ac-
curacy of our method, 83.5%, compares to other state-of-
the-art published methods on the unrestricted setting of La-
beled Faces in the Wild (Taigman et al. (2009)), but performs
slightly worse than Kumar et al. (2009) (85.3%). However,
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L2-2304D PCA-100D LDML-100D
SMLR model

Random set 89.1 86.1 88.3
Expansion set 88.8 86.6 88.6

Generative model
Query set 69.4 85.0 91.3
Expansion set 70.7 85.6 91.5
Friends as Mixture 79.6 91.9 95.3

Graph-based
eps 74.5 73.6 87.0
kNN 74.9 77.1 85.5

Table 1 In this table we give an overview of the mAP scores over 23
queries for the different methods and features.
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Fig. 13 Precision (y-axis) versus Recall (x-axis) of the Generative
Methods using Friends or not, and using LDML or L2. For compar-
ison we also show the SMLR method.

their descriptor is based on the output of 65 attribute classi-
fiers trained on external and manually annotated face data.

In the rest of the experiments, we will use the descriptor
composed of scale 2 and 3 only, because it is 2304D com-
pared to 3456D for the full descriptor, without any loss of
performance. In the following section, we compare the per-
formance of the raw descriptor to 100D PCA and LDML
projections for the two tasks considered in the paper.

7.2 Experiments on face retrieval

In this section we describe the experiments for face retrieval
of a specific person. We use the training set of Labeled Ya-
hoo! News to obtain PCA and LDML projections for the
data, apply them to the test set and query for the 23 person
mentioned in Section 3.2. The train set and test set are com-
pletely disjoint, none of the individuals in the test set occurs
in the train set.

In our experiments we compare the original features (L2-
2304D), PCA with 100D and LDML with 100D. We eval-
uate the methods using the mean Average Precision (mAP),
over the 23 queries.

In Table 1 we show the results of the described meth-
ods, using the 3 different similarity measures. We observe
that the SMLR model obtains the best performance on the

original face descriptor, and its performance is only slightly
modified when using dimensionality reduction techniques.
This can be explained by the fact that the SMLR model it-
self is finding which dimensions to use, and both PCA and
LDML have less dimensions to select from.

We further observe that the generative method benefits
from both dimension reduction techniques, the performance
of the standard method increases by approximatively 15%
using PCA, and around 22% using LDML. Altough PCA
is an unsupervised dimensionality reduction scheme, the in-
crease in performance can be explained by the reduced num-
ber of parameters that has to be fit and decorrelating the vari-
ables. The best scoring method is the generative method us-
ing a background consisting of a mixture of friends, with
LDML features. This constitutes an interesting combination
of the discriminatively learned LDML features with a gen-
erative model.

Finally, in Table 1, we see that the graph-based method
also greatly takes advantage of LDML features, whereas PCA
dimensionality reduction performs similarly to L2.

In Figure 13, we show the precision for several levels of
recall, again averaged over the 23 queries. The improvement
by using LDML is made again clear, there is an improve-
ment of more than 20% in precision for recall levels up to
90%.

In Figure 14, we show the retrieval results for the gener-
ative approach using PCA or LDML, with or without mod-
elling friends. We observe that on a query like John-Paul
II, LDML offers better results than PCA. Modelling friends
helps PCA reach the performance of LDML. The friends ex-
tension is mainly advantageous for the most difficult queries.
From the faces retrieved by the text-based query for Sad-
dam Hussein, the majority is in fact from George Bush. Us-
ing LDML, it is not surprising that the model focuses even
more strongly on images of Bush. Using friends, however,
we specifically model George Bush to suppress its retrieval,
and so we are able to find the faces of Saddam Hussein.

7.3 Experiments on names and faces association

For solving all names and faces associations in images, we
also use the training and test sets, which are disjoint in the
identities of the persons. We learn the similarity measures
using LDML and PCA on the training set. Then, we apply on
the test set the methods described in Section 6 and measure
their performance. We call the performance measure we use
the “naming precision”. It measures the ratio between the
number of correctly named faces over the total number of
named faces. Recall that some faces might not be named by
the methods (null-assignments).

Concerning the definition of weights for the graph, we
found that using wij = θ − d(xi,xj) yields more stable
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Fig. 14 First fourteen retrieved faces for the queries John-Paul II (top) and Saddam Hussein (bottom) using the generative approach. We highlight
in green the correctly retrieved faces and in red the incorrect ones. This shows the merit of metric learning for most queries and illustrate the
necessity of modelling friends for difficult queries.

results than the binary weights obtained using θ as a hard
threshold for the distance value. This is simply because the
thresholding process completely ignores the differences be-
tween values if they fall on the same side of the threshold.
The value of θ influences the preference of null assignments.
If θ is high, faces are more likely to have positive weights
with many faces in a cluster, and therefore is more likely to
be assigned to a name. At the opposite, with a small θ, a
given face is more likely to have negative similarities with
most faces in admissible clusters, and therefore is less likely
to be associated to any name. Similarly, we can vary the pa-
rameter θ of the prior for the generative approach as given
in Eq. (18). For both approaches, we plot the naming preci-
sion for a range of possible number of named faces. This is

done by exploring the parameter space in a dichotomic way
to obtain fifty points in regular intervals.

In Figure 16, we show the performance of the graph-
based approach (Graph) compared to the generative approach
of mixture of Gaussians (Gen.) for 100 dimensional data,
obtained either by PCA or by LDML. We also show the per-
formance of L2, i.e. the Euclidean distance for the graph and
the original descriptor for the generative approach.

We can first observe that PCA is comparable to the Eu-
clidean distance for the graph-based approach. This is ex-
pected since PCA effectively tries to minimize the data re-
construction error. The generative approach benefits from
the reduced number of parameters to set when using PCA
projections, and therefore PCA is able to obtain better clus-
tering results, up to 10 points when naming around 5000
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PCA-100d LDML-100d
Graph-based

Correct: name assigned 6585 7672
Correct: no name assigned 3485 4008
Incorrect: not assigned to name 1007 1215
Incorrect: wrong name assigned 3750 1932

Generative model
Correct: name assigned 8327 8958
Correct: no name assigned 2600 2818
Incorrect: not assigned to name 765 504
Incorrect: wrong name assigned 3135 2547

Table 2 Summary of names and faces association performance ob-
tained by the different methods when the maximum number of cor-
rectly associated names and faces is reached.

faces. We also observe that LDML performs always better
than its PCA counterpart for any given method. The increase
in performance is most constant for the generative approach,
for which the precision is approximatively 10 points higher.
For the graph-based approach, up to 16 points are gained
around 8700 named faces but the difference is smaller at
the extremes. This is because the precision is already high
with L2 and PCA when naming few faces. When naming al-
most all faces, the parameter θ of the graph-based method is
too high so that most faces are considered similar. Therefore
the optimisation process favors the largest clusters when as-
signing faces, which decreases the performance of all graph-
based approches.

For both projection methods and for the original descrip-
tor, the graph-based approach performs better than the gen-
erative approach when fewer faces are named, whereas the
generative approach outperforms the graph-based when more
faces are named. The latter observation has the same expla-
nation as above: the performance of graph-based methods
decreases when it names too many faces The former was
expected: when too few faces are assigned to clusters, the es-
timation of the corresponding Gaussian parameters are less
robust, thus leading to decreased performance.

Finally, in Table 2, we show the number of correct and
incorrect associations obtained by the different methods, us-
ing the parameter that leads to the maximum number of cor-
rectly associated names and faces. In Figure 15, we show
qualitative results for the comparison between LDML-100d
and PCA-100d for our graph-based naming procedure. These
difficult examples show how LDML helps detecting null-
assignments and performs better than PCA for selecting the
correct association between faces and names.

8 Conclusions

In this paper, we have successfully integrated our LDML
metric learning technique (Guillaumin et al., 2009b) to im-
prove performance of text-based image retrieval of people (Guil-
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Fig. 15 Four document examples with their naming results for LDML-
100d and PCA-100d when the maximum number of correctly associ-
ated names and faces is reached. The correct associations are indicated
in bold. On these examples, the names that can be used for associa-
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laumin et al., 2008, Mensink and Verbeek, 2008, Ozkan and
Duygulu, 2006), and names and faces association in news
photographs (Berg et al., 2004, Guillaumin et al., 2008).

Using the well studied Labeled Faces in the Wild data
set (Huang et al., 2007b), we have conducted extensive ex-
periments in order to compare metric learning techniques
for face identification and study the influence of the param-
eters of our face descriptor. These experiments extend and
improve over Guillaumin et al. (2009b).

In order to measure the performance of our retrieval and
assignment techniques, we have fully annotated a data set of
around 20000 documents with more than 30000 faces (Guil-
laumin et al., 2010). This data set is publicly available for
fair and standardised future comparison with other approaches.

Using this data set, we have shown that metric learn-
ing improves both graph-based and generative approaches
for both tasks. For face retrieval of persons, we have im-
proved the mean average precision of the graph-based ap-
proach from 77% using PCA projection to more than 87%
using LDML. Using the metric learning projection, the per-
formance reaches 95% when using a generative approach
that also models people frequently co-occurring with the
queried person, compared to 80% with the original descrip-
tor.

For names and faces association, we have attained pre-
cision levels above 90% with the graph-based approach, and
around 87% for the generative approach, which is in both
cases 6 points above the best score obtained using PCA.
Since these maxima are attained for different numbers of
named faces, the generative approach is in fact able to cor-
rectly name a larger number of faces, up to almost 9000
faces.

In future work, we plan to use the caption-based super-
vision to alleviate the need for manual annotation for metric
learning. This could be obtained by using the face naming
process for automatically annotating the face images, or by
casting the problem in a multiple instance learning frame-
work.
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