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1ETH Zürich, Switzerland 2Microsoft, Austria 3Kooaba AG, Switzerland
4KU Leuven, Belgium

Abstract. We introduce a complete pipeline for recognizing and clas-
sifying people’s clothing in natural scenes. This has several interesting
applications, including e-commerce, event and activity recognition, on-
line advertising, etc. The stages of the pipeline combine a number of
state-of-the-art building blocks such as upper body detectors, various
feature channels and visual attributes. The core of our method consists
of a multi-class learner based on a Random Forest that uses strong dis-
criminative learners as decision nodes. To make the pipeline as automatic
as possible we also integrate automatically crawled training data from
the web in the learning process. Typically, multi-class learning benefits
from more labeled data. Because the crawled data may be noisy and
contain images unrelated to our task, we extend Random Forests to be
capable of transfer learning from different domains. For evaluation, we
define 15 clothing classes and introduce a benchmark data set for the
clothing classification task consisting of over 80, 000 images, which we
make publicly available. We report experimental results, where our clas-
sifier outperforms an SVM baseline with 41.38 % vs 35.07 % average
accuracy on challenging benchmark data.

1 Introduction

Clothing serves for much more than covering and protection. It is a means of
communication to reflect social status, lifestyle, or membership of a particular

�oral short dress.
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Fig. 1: Overview of our classification pipeline. First, an upper body detection
algorithm is applied to the image. Then we densely extract a number of features.
Histograms over the extracted features are used as input for a Random Forest
(type classification) and for SVMs (attribute classification).
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(sub-)culture. The apparel is also an important cue for describing other people.
For example: “The man with the black coat”, or “the girl with the red bikini”.
The objective of this paper is to detect, classify, and describe clothes appearing
in natural scenes in order to generate such descriptions with a focus on upper
body clothing. Typically this means not only recognizing the type of clothing a
person is wearing, but also the style, color, patterns, materials, etc. An example
of a desired outcome would be to label the clothing in Figure 1 as “girl wearing
a summer dress with a floral pattern”. Only such a combination of type and
attributes comes close to the descriptions we use as humans.

Such a system has many potential applications, ranging from automatic label-
ing in private or professional photo collections, over applications in e-commerce,
or contextual on-line advertising up to surveillance. Hence, systems for analyzing
visual content may benefit significantly from autonomous apparel classification.

Enabling such robust classification of clothing in natural scenes is a non-
trivial task that demands the combination of several computer vision fields. We
propose a fully automated pipeline that proceeds in several stages (see Figure 1):
First, a state-of-the art face and upper body detector is used to locate humans
in natural scenes. The identified relevant image parts are then fed into two
higher level classifiers, namely a random forest for classifying the type of clothing
and several Support Vector Machines (SVMs) for characterizing the style of the
apparel. In case of the random forest, SVMs are also used as split nodes to yield
robust classifications at an acceptable speed.

Since the learning of classifiers demands large amounts of data for good gen-
eralization, but human annotation can be tedious, costly and inflexible, we also
provide an extension of our algorithm that allows for the transfer of knowledge
from corresponding data in other domains. E.g. knowledge from crawled web-
data may be transferred to manually curated data from a clothing retail chain.
We demonstrate this approach on 15 common types (classes) of clothing and
78 attributes. The benchmark data set for cloth classification is consists of over
80, 000 images.

In summary, the contributions of this work are:

– a pipeline for the detection, classification and description of upper body
clothes in real-world images

– a benchmark data set for clothing classification
– an extension of Random Forests to transfer learning from related domains

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. An overview of our method is given in Section 3. In Section 4, the
benchmark data set is introduced and in Section 5 our algorithms are evaluated.
The paper ends with concluding remarks in Section 6.

2 Related Work

Classifying apparel or clothing is part of the wider task of classifying scenes. It
is also related to detecting and describing persons in images or videos. Interest-
ingly, in the past there has been little work on classifying clothing. Chen et al. [4]
manually built a tree of composite clothing templates and match those to the
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image. Another strand of work specifically focuses on segmentation of garments
covering the upper body [14]. More recently Wang et al. [27] also investigated
segmentation of upper bodies, where the individuals occlude each other. Re-
trieving similar clothes given a query image was addressed by Liu et al. [20]
and Wang et al. [28]. In the latter work, the authors use attribute classifiers for
re-ranking the search results. Song et al. [24] predict people’s occupation incor-
porating information on their clothing. Information extracted from clothing has
also been used successfully to improve face recognition results [13].

Very recently, detection and classification of apparel has gained some mo-
mentum in the computer vision community. For instance, Yamaguchi et al. [29]
show impressive results, relying strongly on state-of-the-art body pose estima-
tion and superpixel segmentation. Their work focuses on pixelwise annotation.
A somewhat limiting factor of that work is, that occurring labels are supposed
to be known beforehand.

In this paper, we do not focus on clothing segmentation or similarity search,
but on classification, i.e., the problem of describing what type of clothing is worn
in an image. To do so, we build on top of existing work [14, 13, 28] for clothing
segmentation as described in Section 3.1, to then fully focus on the classification
task. Our work is also related to learning visual attributes, which also has gained
importance in recent years. They have been applied in color and pattern nam-
ing [12], object description [11], and face verification [16]. Within the context
of our proposed task, attributes are obviously suited for describing the visual
properties of clothing. To this end, we follow the algorithm by Farhadi et al. [11]
for semantic attributes and extend it with s-o-a techniques as described in the
following section.

3 Classifying Upper Body Clothing

In this work we focus on identifying clothing that people wear on their upper
bodies, in the context of natural scenes. This demands the combination of several
robust computer vision building blocks, which we will describe in the sequel.

Our apparel classification mechanism consists of two parts: one part describes
the overall type/style of clothing, e.g., “suit”, “dress”, “sweater”. The other part
describes the attributes of the style, such as “blue”, “wool”. By combining the
outputs of these parts the system can come up with detailed descriptions of
the clothing style, such as “blue dress”. This combination is crucial for a real-
world applications, because the labeling with either only the type (“dress”),
or only its attributes (“blue”) would be quite incomplete. The combination is
also important for higher level tasks, such as event detection. For instance the
knowledge that a dress is white may refer to a wedding.

More specifically, our method carries out the following steps: the first stage
consists of s-o-a upper body detection as will be described in Section 3.1. After
identification of upper bodies, we extract a number of different features from
this region with dense sampling as explained in Section 3.2. These features are
then transformed into a histogram representation by applying feature coding
and pooling.
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These features build the basis for classifying the type of apparel (part 1 of
the system, Section 3.3) and for classification of apparel attributes (part 2 of the
system, Section 3.4).

3.1 Pre-Processing

Throughout this work we deal with real-world consumer images as they are found
on the Internet. This entails multiple challenges concerning image quality, e.g.,
varying lighting conditions, various image scales, etc. In a first pre-processing
step, we address these variations by normalization of image dimensions and color
distributions. This is achieved by resizing each image to 320 pixels maximum side
length and by normalizing the histogram of each color channel.

As mentioned earlier, in order to identify clothing we need to identify per-
sons first. One straightforward way to localize persons is to parametrize the
upper body bounding box based on the position and scale of a detected face.
In addition to this simple method, we also use the more sophisticated Calvin
upper body detector [9], to generate additional bounding box hypotheses. All
generated hypotheses are then combined through a non maximum suppression,
in which hypotheses originating from the calvin upper body detector are scored
higher than hypotheses coming only from the face position.

3.2 Features

In terms of feature extraction and coding, we follow a s-o-a image classification
pipeline:
Feature extraction Within the bounding box of an upper body found in the

previous step, we extract a number of features including SURF [1], HOG [6],
LBP [21], Self-Similarity (SSD) [23], as well as color information in the L*a*b
space. All of those features are densely sampled on a grid.

Coding For each of the feature types except LBP, a code book is learnt by
using K-Means1. Subsequently all features are vector quantized using this
code book.

Pooling Finally, the quantized features are then spatially pooled with spatial
pyramids [18] and max-pooling applied to the histograms.

For each feature type this results in a sparse, high-dimensional histogram.

3.3 Apparel Type Learning

After person detection and feature extraction, we use a classifier for the final
clothing type label prediction. Since we face a multi-class learning problem with
high-dimensional input and many training samples, we use Random Forests [2]
as our classification method. Random Forests (RF) are fast, noise-tolerant, and
inherently multi-class classifiers that can easily handle high-dimensional data,
making them the ideal choice for our task.

1 We used 1, 024 words for SURF and HOG, 128 words for color and 256 words for
SSD, respectively.
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A RF is an ensemble of T decision trees, where each tree is trained to maxi-
mize the information gain at each node level, quantified as

I(X , τ) = H(X )−
(
|Xl|
|X |

H(Xl) +
|Xr|
|X |

H(Xr)

)
(1)

where H(X ) is the entropy for the set of samples X and τ is a binary test to split
X into subsets Xl and Xr. Class predictions are performed by averaging over the
class leaf distributions as p(c|L) = 1

T

∑T
t=1 P (c|lt) with L = (l1, . . . , lT ) being

the leaf nodes of all trees. The term random stems from the fact that during
training time only a random subset over the input space is considered for the
split tests τ and each tree uses only a random subset of the training samples.
This de-correlates the trees and leads to lower generalization error [2].

Following the idea of Yao et al. [30], we use strong discriminative learners in
the form of binary SVMs as split decision function τ . In particular, if x ∈ Rd

is a d-dimensional input vector and w the trained SVM weight vector, an SVM
node splits all samples with wTx < 0 to the left and all other samples to the
right child node, respectively. In order to enable the binary classifier to handle
multiple classes, we randomly partition these classes into two groups. While
training, several of those binary class partitions are randomly generated. For each
grouping, a linear SVM is trained for a randomly chosen feature channel. Finally
the split that maximizes the multi-class information gain I(X ,w), measured on
the real labels, is chosen as splitting function, i.e., ŵ = argmaxw I(X ,w)

Random forests are highly discriminative learners but they can also overfit
easily to the training data if too few training samples are available [3], an ef-
fect that tends to intensify if SVMs are used as split nodes. Therefore, in the
following, we propose two extensions to the random forest algorithms of [2] and
[30] that shall improve the generalization accuracy but keep the discriminative
power.

Large Margin While training, different split functions often yield the same
information gain. Breaking such ties is often done by randomly selecting one
split function out of the best performing splits. In this work we introduce an
additional selection criterion to make more optimal decisions. It is inspired by
Transductive Support Vector Machines (TSVM) [15], where the density of the
feature space around the decision boundary is taken into account while solving
the optimization problem for w. Opposed to TSVMs however, we do not use
this information while optimizing w, but go after minimal feature density (or
largest margin) as an additional optimality criterion for the split selection. In
other words, if several split functions perform equally well, the density of the
feature space within the margin is taken into account, estimated as:

Im(X ,w) =
1

|X |
∑
x∈X

max
(
0, 1− |wTx|

)
(2)

with the decision boundary w and training examples X . Then the optimal split
can be chosen by minimizing the above equation w.r.t. w, i.e., the optimal split
function is given by ŵ = argminw Im(X ,w).
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Transfer Forests Another option to improve the generalization power of Ran-
dom Forest is to use more training samples. However, it is often not easy to
acquire more training samples along with good quality annotations. One way to
achieve this is to outsource the labeling task to crowdsourcing platforms, such as
Mechanical Turk [25]. Yet, this demands careful planning for an effectively de-
signed task and an adequate strategy for quality control. It can also not be used
to annotate confidential data. Therefore, previous work also studied the exten-
sion of RFs to semi-supervised learning [19, 5] in order to benefit from additional
unlabeled data, which is usually cheap to collect.

For our task, we can use text-based image search engines to gather large
amounts of images, such that the returned images come already with prior labels
ĉ. For instance, we can type cotton, black, pastel, etc. to get clothing images
that probably exhibit these attributes. Similarly, we can type jacket, t-shirt,
blouse, etc. to get images containing our target type classes. On the downside,
these images may contain high levels of noise and originate from variable source
domains. Thus, not all samples might fit to our task and ĉ cannot be considered
to flawlessly correspond to the real label c.

Therefore, we extend Random Forests to Transfer Learning (TL) [22], which
tries to improve the classification accuracy in scenarios where the training and
test distributions differ. In particular, assume having access to M samples from
the labeled target domain X l (e.g. a manually labeled and quality controlled
data set) along with their labels C. Additionally, in TL one has access to N
samples from an auxiliary domain X a (e.g. Google image search) together with
their labels Ĉ. The task of TL is to train a function f : X → C that performs
better on the target domain via training on X l ∪ X a than solely relying on X l.
There exist many approaches to TL (c.f. [22]) and its usefulness has also been
demonstrated in various vision domains, e.g. [26, 17]. We present here a novel
variant of transfer learning for Random Forests as this is our main learner.

To this end, we exploit the idea that although the source and target distribu-
tions might be different, some of the source samples xi ∈ X a can still be useful
for the task and should thus be incorporated during learning, while samples
that may harm the learner should be eliminated. In order to accomplish such
an instance-transfer approach (c.f. [22]) for Random Forests, we augment the
information gain of Eq. 1 to become

I∗(X ,w) = (1− λ) · I(X l,w) + λ · I(X a,w), (3)

where the first term corresponds to Eq. 1 and I(X a,w) measures the information
gain over the auxiliary data. The overall influence of X a is controlled via the
steering parameter λ ∈ [0, 1].

The information gain I relies on the standard entropy measure H(X ) =
−
∑

c pc log(pc) with pc = 1
|X |
∑

i ϕ(xi,Xc), where ϕ(xi,Xc) is the indicator

function and is defined as

ϕl(xi,Xc) =

{
1 if xi ∈ Xc

0 else,
(4)
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Colors Patterns Materials Structures Looks Persons Sleeves Styles

beige animal print cotton frilly black/white child long 20’s nerd
black zebra denim knitted colored boy short 50’s outdoor
blue leopard fur ruffled gaudy girl none 60’s preppy
brown argyle lace wrinkled pastel female 70’s punk
gray checkered leather male 80’s rock
green dotted silk 90’s romantic
orange floral tweed bohemian sports
pink herringbone wool business wedding
purple houndstooth casual spring
red paisley dandy summer
teal pinstripes hip hop autumn
white plaid hippie winter
yellow print mod

striped
tartan

Table 1: List of attribute categories and the attributes therein.

with Xc representing the set of samples for class c. Note, the auxiliary dataset
influences only the selection of the trained SVM for each node, but it is not used
during the actual training of the SVM.

3.4 Clothing Attribute Learning

The slight differences in appearance of apparel are often orthogonal to the type of
clothing, i.e., the composition of colors, patterns, materials and/or cuttings often
matter more than the information, that a particular cloth is e.g. a sweater. A
common way to include such kind of information is to represent it by semantic
attributes. We define eight attribute categories with in total 78 attributes as
shown in Table 1. The training of the attributes happens for each of the eight
attribute categories separately. Within each of those, the different attributes
are considered mutually exclusive. Thus, within a category, we train for each
attribute a one-vs-all linear SVM on the features described in Section 3.2.

4 Data Sets

For both tasks – classification of clothes and attribute detection – we collected
two distinct data sets. Additionally, an auxiliary data set X a was automatically
crawled to be used for our transfer learning extension for Random Forests.

4.1 Apparel Type

To the best of our knowledge, there is no publicly available data set for the
task of classifying apparel or clothing, respectively. The large variety of different
clothing types and, additionally, the large variance of appearance in terms of
colors, patterns, cuttings etc. necessitate that a large data set be used for training
a robust classifier. However, assembling a comprehensive and high quality data
set is a daunting task.
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Category Images Boxes Category Images Boxes Category Images Boxes

Long dress 22, 372 12, 622 Suit 12, 971 7, 573 Shirt 3, 140 1, 784
Coat 18, 782 11, 338 Undergarment 10, 881 6, 927 T-shirt 2, 339 1, 784
Jacket 17, 848 11, 719 Uniform 8, 830 4, 194 Blouses 1, 344 1, 121
Cloak 15, 444 9, 371 Sweater 8, 393 6, 515 Vest 1, 261 938
Robe 13, 327 7, 262 Short dress 7, 547 5, 360 Polo shirt 1, 239 976

Total 145, 718 89, 484

Table 2: Main classes and number of images per class of the benchmark data set

Luckily, ImageNet [8], a quality controlled and human-annotated image data-
base that is hierarchically organised according to WordNet, contains many cat-
egories (so called synsets) related to clothes. Nevertheless, a closer look at Im-
ageNet’s (or rather WordNet’s) structure reveals that clothing synsets often do
not correspond to the hierarchy a human would expect. Therefore we hand-
picked 15 categories and reorganized ImageNet’s synsets accordingly. Due to
how ImageNet is built, some images are ambiguous and quite a few are very
small. As a cleaning step, we preprocess each image as described in Section 3.1.
If no face or upper body can be detected, a centered bounding box is assumed
as ImageNet also contains web shop images that show pieces of clothing alone.
The resulting bounding boxes smaller than 91 pixels were discarded.

An overview over the categories can be found in Table 2. As a contribution
of this paper, we make the details of the data set publicly available so that
the community can use this subset of ImageNet as a benchmark for clothing
classification.

4.2 Transfer Forest
For each of the clothing type classes, we collected the auxiliary data set X a by
querying Google image search multiple times with different word combinations
for the same category (e.g. “sweater women”, “sweater men” or e.g. “long dress
formal”, “long dress casual”) such that the retrieved data contains some varia-
tion. We again restricted the result to photos of a minimum size of 300×400 pixels
and performed no further supervision on the 42, 624 downloaded images.

4.3 Attributes
In order to train classifiers for visual attributes, we need a special training data
set just for this task. While ImageNet provides images with attribute annotation,
it only covers a small part of our defined attributes (c.f. Table 1). Moreover,
ImageNet provides attribute annotation only for a subset of its synsets, thus
making this data source not appropriate for learning our selection of attributes.
Therefore we construct a third distinct data set by automatically crawling the
Web. For each attribute, we let an automated script download at least 200 images
using Google image search and restricted results to photos of a minimum size
of 300 × 400 pixels. For each attribute, the script generates a query composed
of the attribute label and one of the words “clothing”, “clothes” or “look” as
query keyword. No further supervision was applied to those 25, 002 images after
downloading.
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(a) (b)

Fig. 2: Confusion matrix of our clothing classes for the best performing SVM
classifier on the left side and the proposed Transfer Forest on the right side.

5 Experiments

In this section we present experiments to evaluate our algorithm quantitatively.
First we show the results for the apparel type part, then the results for the
attribute part. An overview of the relevant results can be found in Table 3.

5.1 Apparel Types

We present three sets of numerical evaluations. First, using the apparel type
data set introduced in Section 4.1, we trained a SVM as a baseline. Then, the
results for Random Forest with SVMs as split nodes are shown. Finally, the
effectiveness of the proposed Transfer Forest is demonstrated.

SVM Baseline As a baseline experiment we train a one-vs-all linear SVM for
each clothing type category. We evaluated all possible feature combinations, and
also L2 regularized hinge as well as L1 regularized logistic loss. For the evaluation
of the feature combinations, the histograms of the different extracted features
(c.f. Section 3.2) were simply concatenated. We used 80 % of the bounding
boxes of each class for training and the remaining part for testing. Finally, L1

regularized logistic loss using all available features yielded with 35.03 % average
accuracy the best performance. The confusion matrix is shown in Figure 2a.
There is a clear bias towards overrepresented classes.

Random Forest To evaluate the performance of the random forest framework
we define the following protocol: again we use 80 % of the images of each type
class of the data set for training and the remainder for testing. Each tree has
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Learner Avg. Acc. [%]

One vs. all SVM 35.03

RF 38.29

RF + large margin on X l 39.31

RF on X l ∪ Xa, näıve 36.27

RF on X l ∪ Xa, Daumé [7] 35.00

Transfer Forest 41.36

Table 3: Classification performance mea-
sured as average accuracy over all classes
on our benchmark data set for different
methods.

Fig. 3: Percentage of co-occurring classes
in the deepest split nodes. Note how
semantic similar classes often occur to-
gether.

been trained on a random subset of the training set, which contains 500 images
for each class, thus 7, 500 images in total.

While training, we generate at each node 50 linear SVMs with the feature
type and the binary partition of the class labels chosen at random. Other than
what Yao et al. [30] propose, we do not randomly sample subregions within
the bounding boxes, but use the spatially pooled histograms (c.f. Section 3.2) as
input for the SVMs. Each tree is then recursively split until either the information
gain stops increasing, the numbers of trainings examples drops below 10, or a
maximum depth of 10 is reached. In total we trained 100 trees out of which we
created 5 forests by randomly choosing 50 trees. The final result is then averaged
over those 5 forests to reduce the variance of the results.

Baseline With 38.29 % average accuracy, our Random Forest with SVMs as split
functions outperforms the plain SVM baseline (35.03 %) significantly. It handles
the uneven class distribution much better as can be seen in Figure 2b. These
results confirm our expectation that a Random Forest is a suitable learner for
our task. Figure 3 shows the co-occurrences of the different classes at the deepest
levels of the tree. Interestingly, semantic similar classes often occur together.

Large Margin Having strong discriminative learners as decision nodes renders
the information gain as optimization criterion often as too weak a criteria: several
different splits have the same information gain. In this case, choosing the split
with the largest margin amongst the splits with the same information gain on
the training data seems beneficial as performance increases about 1 % compared
to the Random Forest baseline.

Transfer Forest To assess the performance of our approach, we follow the
protocol defined in the baseline Random Forest evaluation. The parameter λ of
Eq. 3 was varied between 0 < λ < 1 in 0.05 steps. Unfortunately, no distinct
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Category Acc. [%] Reg. Loss Surf Hog Color Lbp Ssd

Looks (4) 71.63 L2 hinge × × × ×
Sleeves (3) 71.52 L1 logistic × × ×
Persons (5) 64.07 L2 hinge × × × ×
Materials (8) 63.97 L1 logistic × × × × ×
Structure (4) 63.64 L1 logistic ×
Colors (13) 60.50 L2 hinge × × ×
Patterns (15) 49.75 L1 logistic ×
Styles (25) 37.53 L2 hinge ×

Table 4: Best average accuracy for each attribute category with the correspond-
ing features. The number of attributes per category is denoted in in parentheses.

best choice for λ is obvious. Yet, our approach yields minimum and maximum
improvement of 2.18 % and 3.09 % over the baseline Random Forest, respectively.
On average, any choice of λ increased the performance about 2.45 % in that
0 < λ < 1 interval.

To validate our assumption that transfer learning is beneficial in this case, we
also trained a forest on the union of X a and X l, thus treating the auxiliary images
as they would stem from the regular data set. In this case, the performance
significantly drops below that of the baseline Random Forest.

As a sanity check, we also compared to another domain adaptation method
presented by Daumé [7], which comes at a cost of tripling the memory require-
ments and substantially longer training times, as the feature vectors that are
passed on to the SVM are thrice as large. Moreover, also this approach does not
improve the performance over that of the baseline Random Forest (see Table 3).
This (i) highlights the importance of using transfer learning when incorporat-
ing data from different domains for our task and (ii) also shows that Random
Forests are useful for transfer learning.

5.2 Attributes

For training and testing we assume that within a given attribute category (e.g.
colors or patterns) attributes (e.g. red, white or zebra,dotted) are mutually ex-
clusive. Furthermore attribute with the least samples constrains the number of
samples for all other attributes in the same category. With this, out of the 25, 002
downloaded images, 16, 155 were used for testing and training the attributes. The
data set was split in 75 % of samples for training and 25 % for testing.

We extract the features as described in Section 3.2 and train several linear
one vs. all SVMs [10] with all possible feature combinations as well as with
L1 regularized logistic loss and L2 regularized hinge loss. For the experiments,
the cost was set at C = 1 as the classification performance stayed invariant in
combination with max pooling. Results are shown in Table 4. The classifica-
tion accuracy ranges between about 38 % and 71 % depending on the category.
Of course it is expected that attribute categories with less possible values (e.g.
sleeves) perform better than those with many (e.g. patterns). Nevertheless a
classification task such as the sleeve length is not trivial and performs surpris-
ingly well. On the other hand color and pattern classification could probably be
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improved. It appears the classifier is distracted too much by background data
present within the bounding box. A simple fix would be to sample data only from
a small part from the center of the bounding box for categories such as colors
or patterns. A large category such as styles with many “fuzzy” or “semantic”
attribute values such as “punk” or “nerd” poses of course a challenge to even an
advanced classifier.

5.3 Qualitative Results

In Figure 4 some example outputs of our full pipeline are shown. Note how we are
able to correctly classify both style and attributes in many situations. This would
allow a system to come up with the desired description combining attributes and
style. For instance for the first example in the middle row a description such as
“Girl wearing a pastel spring short dress without sleeves” could be generated.
Also note how the random forest robustly handles slight variations in body
pose for cloth classification (e.g., in the top right example). Of course, accurate
detection of the upper body is crucial for our method, and many of the failure
cases are due to false upper body detections (example in the 3rd row, 3rd image).
Another source for confusion are ambiguities in the ground truth (3rd row, 1st

and 2nd example). For attributes performance is mainly challenged by distracting
background within the bounding box or lack of context in the bounding box (e.g.,
2nd row, 2nd example).

6 Conclusion

We presented a complete system, capable of classifying and describing upper
body apparel in natural scenes. Our algorithm first identifies relevant image
regions with state of the art upper body detectors. Then multiple features such
as SURF, HOG, LBP, SSD and color features are densely extracted, vector
quantized and pooled into histograms and fed into two higher level classifiers,
one for classifying the type and one for determining the style of apparel. We could
show that the Random Forest framework is a very suitable tool for this task,
outperforming other methods such as SVM. Since there are many apparel images
available on the web but they often come with noise or unrelated content, we
extended Random Forests to transfer learning. While this improved the accuracy
for the task at hand, we believe that also other vision applications using Random
Forests might benefit from this algorithmic extension. We also introduced a
challenging benchmark data set for the community, comprising more than 80, 000
images for the 15 clothing type classes. On this data set, our Transfer Forest
algorithm yielded an accuracy of 41.36 %, when averaged over the type classes.
This represents an improvement of 3.08 % compared to the base line Random
Forest approach and an improvement of 6.3 % over the SVM baseline.

Acknowledgement. We thank Fabian Landau for his excellent work on seg-
mentation. This project has been supported by the Commission for Technology
and Innovation (CTI) within the program 12618.1.
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Fig. 4: Some example output of our pipeline. The header denotes the ground
truth class. Each example shows the detected bounding box and the output of
the type classifier. On the left side of each example, the output of the most
confident attribute classifier for each attribute group is shown.
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