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Designing Cameras to Detect the Invisible: 
Imaging and Vision in Harsh Conditions



Imaging and Vision
are ubiquitous 
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… we can’t stick just to supervision 
to achieve robust vision.



… we can’t stick just to supervision 
to achieve robust vision.



Edge Cases ?

FRCNN Resnet 50
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Best practice is to 
supervise to handle 
edge-cases

Not Differentiable.

Not Differentiable.



Bad Pixel 
Correction

The “Golden Eye” Expert

Parameters ?
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“Golden Eye”Tune ISP for Object Detection
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End-to-End Models for Edge-Cases

Instead Of Labeling Edge-Cases
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Bad Pixel 
Correction

Parameters ?
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Typical Imaging Stack

Not Differentiable.



Stage 1: Learning the Differentiable Proxy Function

Stage 2: Optimizing Hyperparameters for Task-Specific Outputs 
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𝒪ISP = 𝑓ISP( 𝐼 , 𝒫 )

𝑓ISP
𝐼

𝒫

𝒪ISP

Stage 1: Learning the Differentiable Proxy Function



𝒪PROXY = 𝑓PROXY( 𝐼 , 𝒫 ,𝒲)

𝑓PROXY
𝒪PROXY

𝒲

𝐼

𝒫

𝒪ISP

ℒPROXY

[Ronneberger15]

Stage 1: Learning the Differentiable Proxy Function



𝑓PROXY 𝐼 , 𝒫,𝒲∗ ≈ 𝑓ISP( 𝐼 , 𝒫 )

𝑓PROXY
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𝒪PROXY

𝒪ISP

Stage 1: Learning the Differentiable Proxy Function



Stage 1: Learning the Differentiable Proxy Function

Stage 2: Optimizing Hyperparameters for Task-Specific Outputs 
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𝑓PROXY

𝒪PROXY𝒲∗

Fixed

Task-specific

Target

𝐼

𝒫

ℒTASK

𝒫∗ = argmin𝒫 ℒTASK

𝒫∗

Task-specific

Input

Stage 2: Optimizing Hyperparameters



Joint Optimization of 

Hardware Image Processing & Detection

Sensor

ISP

Hardware ISP
CNN Image Analysis

𝒫 𝒫



𝑓PROXY

𝒲∗

ℒIOU

𝒫∗ = argmin𝒫 ℒIOU( 𝑓DETECT ( 𝑓PROXY( 𝐼, 𝒫,𝒲
∗ ))

𝑓DETECT

Fixed FRCNN

𝒫𝒫∗

𝐼
[Ren15, Geiger13]

Trained Proxy

Domain-specific ISP Fine-Tuning



𝑓PROXY

𝒲∗

Trained Proxy

ℒIOU

𝒫∗ = argmin𝒫 ℒIOU( 𝑓DETECT ( 𝑓PROXY( 𝐼, 𝒫𝐼 ,𝒲
∗ ), 𝒫𝐷)

𝑓DETECT

FRCNN

𝐼

End-to-End Composite Proximal Optimization

[Ren15, Geiger13]

𝒫𝐼 𝒫𝐷

Proximal Optimization



Object Detection Result vs. Tesla Autopilot
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Object Detection Result vs. Nvidia DriveWorks

Nvidia Drive

Finetuned for this sensor ( AR0231)

Proposed



Low-contrast Measurements in Bad Weather



Optimizing Entire Cameras

Differentiable Compound Optics

Sensor

ISP

Hardware ISP
CNN Image Analysis

𝒫 𝒫



[CodeV]

Today’s Compound Optics Design in a Box!



Today’s Compound Optics Design in a Box!

[Geary2002,Garrard2005,
Walker2008,Sun2015]

Optics Design Software

▪ Isolated design
▪ Employ heuristic merit functions
▪ Black box

Thousands available online!



Today’s Compound Optics Design in a Box!

𝜕ℒ

𝜕𝑥⨉️

Compound Optics Sensor Image Signal Processors
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▪ Lens Radius
▪ Conic Constant
▪ Lens Coefficients
▪ Lens Spacing
▪ Glass Material

This Work – Differentiable Compound Optics



End-to-end Camera Design – Optics Modeling

𝑔OPTIC(∙, 𝒫OPTIC)
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End-to-end Camera Design – Proximal Optimization

Nominal Optics Design End-to-end Optimization Training Curve



Experimental Results – Task Specific Compound Optics

Natural Image Capture

Nominal

End-to-end Optimized

Traffic Light DetectionObject Detection



Optimize 𝒫OPTIC and 𝒫ISP to minimize ℒTASK = ℒ1 + ℒPERCEPTUAL [Zhang18]
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f/# = 4.4, Focal Length = 25.0mm

End-to-end Optimized
f/# = 5.8, Focal Length = 33.1mm
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Optimize 𝒫OPTIC , 𝒫ISP , and 𝒫NN to minimize ℒTASK = Intersection over Union loss

Experimental Results – Automotive Object Detection

End-to-end Optimized
f/# = 3.2, Focal Length = 18.5mm

Nominal
f/# = 4.4, Focal Length = 25.0mm
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Optimize 𝒫OPTIC , 𝒫ISP , and 𝒫NN to minimize ℒTASK = Intersection over Union loss
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Nominal
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Experimental Results – Traffic Light Detection



Optimize 𝒫OPTIC , 𝒫ISP , and 𝒫NN to minimize ℒTASK = Intersection over Union loss

Nominal
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Experimental Results – Traffic Light Detection



Robust New Sensors:

3D Detection in the Presence of Backscatter





Pulsed Laser

Gated Imaging Sensor

Slice 1 Slice 2 Slice 3

Gated Imaging



Vehicle Setup

Stereo Camera
Aptina AR0230
1980 ⨉ 1080

Gated Camera
BrightwayVision
1280 ⨉ 720

LiDAR
Velodyne HDL64-S3
64-layer

Gated Camera
Laser Sources



Gated3D Architecture



Qualitative Results
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Qualitative Results
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De-Scattered 

ZeroScatter

Gating for Supervision from RGB

→ map to gated image + loss



Input (Heavy Snow) ZeroScatter Output



Input (Dense Fog) ZeroScatter Output



Differentiate Through Scenes:

Neural Scene Graphs for Inference



Dynamic Automotive Scene

Frame 



Neural Scene Graphs

Neural Scene Graph Representation

Scene Graphs in Graphics

[Strauss et al., 1992]



Pinhole Camera
Observer



Object Bounding Boxes



Sampling Points between
Box-Ray Intersections



Object Radiance



Object Radiance Field

MLP, 2 Stages:



Shared Object
Radiance Fields

MLP, 2 Stages:



Background Plane Representation



Background 
Sampling Points



Background 
Radiance Field

MLP, 2 Stages:



A Dynamic Scene



A Dynamic Scene



A Dynamic Scene



Scene Manipulation

Rotation

Translation



Scene Manipulation – Global Illumination Effects



Scene Manipulation – Global Illumination Effects



Camera Movement

Reconstruction of Dynamic Scene

Objects fixed at t = 0.5 Objects fixed at t = 0.75

Objects fixed at t = 0.25



Neural Scene Graphs for Inference

Object Detection via Inverse Rendering

Neural Representation



Computational imaging for 
robustness without supervision:

• Robust perception, fusion and depth

• “Super-human vision”

• Co-design of sensors + algorithms

Robust Computational Imaging and Vision without Labeling  

Scene Representations 
for Inference

Novel Robust Sensors Vision in Scattering MediaEnd-to-end Cameras

Slice 2

light.princeton.edu


