Designing Cameras to Detect the Invisible:
Imaging and Vision in Harsh Conditions
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Imaging and Vision
are ubiguitous




... we can't stick just to supervision
to achieve robust vision.
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... we can't stick just to supervision
to achieve robust vision.
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Supervise to handle

edge-casesu

T




Best practice is to
supervise to handle Not Differentiable.
edge-cases

Differentiable ! Not Differentiable. Not Differentiable.



The "Golden Eye" Expert "Golden Eye”
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Tune ISP for Object Detection "Golden Eye”
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Differentiable ! Differentiable !

Differentiable ! Differentiable !



End-to-End Models for Edge-Cases
Instead Of Labeling Edge-Cases




Typical Imaging Stack

Not Differentiable.

Parameters ?



Differentiable Proxy
Function

Stage 1: Learning the Differentiable Proxy Function



Stage 1: Learning the Differentiable Proxy Function

Black Box

ISP
fisp

Oisp = fisp(I,P)



Stage 1: Learning the Differentiable Proxy Function

OPROXY
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Stage 1: Learning the Differentiable Proxy Function
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Differentiable Proxy
Function

Stage 2: Optimizing Hyperparameters for Task-Specific Outputs



Stage 2: Optimizing Hyperparameters
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Joint Optimization of
Hardware Image Processing & Detection




Domain-specific ISP Fine-Tuning
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End-to-End Composite Proximal Optimization

Proximal Optimization LIOU
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Object Detection Result vs. Tesla Autopilot

Tesla Autopilot Proposed
(Camera + Radar) (Camera-only)




Object Detection Result vs. Tesla Autopilot

Tesla Autopilot Proposed
(Camera + Radar) (Camera-only)



Object Detection Result vs. Nvidia DriveWorks

Nvidia Drive Proposed
Finetuned for this sensor ( AR0231)



Low-contrast Measurements in Bad Weather

GATED THERMAL



Optimizing Entire Cameras
Differentiable Compound Optics




Today’'s Compound Optics Design in a Box!



Today’'s Compound Optics Design in a Box!

Optics Design Software Thousands available online!

= [solated design
= Employ heuristic merit functions (m T B | I (€ .| ‘ i o) o

= Black box
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[Geary2002,Garrard2005,
Walker2008,Sun2015]



Today’'s Compound Optics Design in a Box!

Compound Optics

Sensor

Image Signal Processors
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Computer Vision




This Work — Differentiable Compound Optics
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End-to-end Camera Design — Optics Modeling
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End-to-end Camera Design — Proximal Optimization

Nominal Optics Design
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End-to-end Optimization

Task Loss
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Experimental Results — Task Specific Compound Optics
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Experimental Results — Natural Image Capture

Optlmlze POPTIC and PISP to minimize LTASK = ,[/1 + LPERCEPTUAL [Zhanng]

End-to-end Optimized
f/# = 5.8, Focal Length = 33.1mm

0° 2° 4° 6° 8° 10° 12°
- - i L
Nominal

f/# = 4.4, Focal Length = 25.0mm
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Experimental Results — Natural Image Capture

Optlmlze ?OPTIC and ?ISP to minimize £TASK = Ll + LPERCEPTUAL [Zhanng]

Nominal End-to-end Optimized
f/# = 4.4, Focal Length = 25.0mm f/# = 5.8, Focal Length = 33.1mm




Experimental Results — Automotive Object Detection

Optimize Popric , Pisp , and Pyn to minimize Lask = Intersection over Union loss

End-to-end Optimized
f/# = 3.2, Focal Length = 18.5mm
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Nominal
f/# = 4.4, Focal Length = 25.0mm
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Experimental Results — Automotive Object Detection

Optimize Popric » Pisp , and Pyn to minimize Lrask = Intersection over Union loss

Nominal End-to-end Optimized
f/# = 4.4, Focal Length = 25.0mm f/# = 3.2, Focal Length = 18.5mm
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Experimental Results — Traffic Light Detection

Optimize Popric , Pisp , and Pyn to minimize Lask = Intersection over Union loss

End-to-end Optimized
f/# = 3.3, Focal Length = 18.8mm

0° 2° 4° 6° 8° 10° 12°

Nominal
f/# = 4.4, Focal Length = 25.0mm
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Experimental Results — Traffic Light Detection

Optimize Popric » Pisp , and Pyn to minimize Lrask = Intersection over Union loss

Nominal End-to-end Optimized
f/# = 4.4, Focal Length = 25.0mm

f/# = 3.3, Focal Length = 18.8mm
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Robust New Sensors:
3D Detection in the Presence of Backscatter







Gated Imaging
Pulsed Laser dl:l

Gated Imaging Sensor [ :ﬂ P
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Vehicle Setup

LIDAR
Velodyne HDL64-S3
64-layer

Gated Camera
Laser Sources

Stereo Camera

Aptina AR0230 Gated Camera

BrightwayVision
1980 x 1080 1980 % 750



Gated3D Architecture

Frustum Segment
Estimation

Al

n Resnet ﬁ Conv. 3x3

\7\ @ ?L i Soft Attention

Concatenatlon

3D Prediction on Gated Image ﬁ Fully Connected




Qualitative Results Slice 1

Slice 2

Gated3D
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X Bird's Eye View Gated Camera View



Qualitative Results
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Qualitative Results
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Qualitative Results
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Qualitative Results
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Qualitative Results Slice 1
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Gating for Supervision from RGB

- map to gated image + loss



Input (Heavy Snow) ZeroScatter Output




Input (Dense Foq) ZeroScatter Output




Differentiate Through Scenes:
Neural Scene Graphs for Inference

Reference



Dynamic Automotive Scene

Frame T



Neural Scene Graphs [Strauss et al., 1992]
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Neural Scene Graph Representation
Scene Graphs in Graphics



Pinhole Camera
Observer




Object Bounding Boxes




Sampling Points between _
Box-Ray Intersections




Object Radiance




Object Radiance Field

Fy. : (x,d,1,,po) — (c,0)

MLP, 2 Stages:
y(x,1),0(x)] = Fo, , (12(x),15)
C(Xa 1o, pO) = F9c,2 (703 (d)7 Y(X: 10): po)




Shared Object
Radiance Fields

Fy. : (x,d,1,,po) — (c,0)

MLP, 2 Stages:
y(x,1),0(x)] = Fo, , (12(x),15)
C(Xa 1o, pO) = Fgc,z (765 (d)v Y(X: 10): po)



Background Plane Representation




Background




Background

ngckg : (X,d) — (C,O’)

MLP, 2 Stages:

y (%), 0(x)] = Fpypp 1 (72(x))
(%) = Foyery o (70(d), ¥ (%))



A Dynamic Scene




A Dynamic Scene




A Dynamic Scene




Scene Manipulation

Rotation

Translation




Scene Manipulation — Global Illumination Effects




Scene Manipulation — Global Illumination Effects




Camera Movement

Objects fixedatt =0.5 Objects fixed att =0.75



Neural Scene Graphs for Inference

Neural Representation



Robust Computational Imaging and Vision without Labeling

End-to-end Cameras Novel Robust Sensors Vision in Scattering Media Scene Representations
for Inference

Computational imaging for

[m] 57 [x] robustness without supervision:
F light.princeton.edu » Robust perception, fusion and depth
E « "Super-human vision”

« Co-design of sensors + algorithms



