Chao Dong

XPixel-Group

Cooperators: Jinjin Gu, Xintao Wang Yihao Liu, Liangbin Xie, Anran Liu, etc.

Interpretability in Low-level Vision

Pixel: What pixels contribute most to restoration?

Feature: Where can we find semantics in SR-net?

Filters: Whether learned filters are discriminative?

Interpretability in Low-level Vision

Pixel: What pixels contribute most to restoration?

Feature: Where can we find semantics in SR-net?

- Filters: Whe

ether learned filters are discriminative?

Interpreting Super-Resolution Networks with Local Attribution Maps

Jinjin Gu, Chao Dong

The University of Sydney, Shenzhen Institutes of Advanced Technology, CAS

Super-Resolution Networks

SR networks build up of convolutional layers and upsampling blocks, with parameter θ . Similar structures can be found in denoising, deblurring, deraining, etc.

Super-Resolution Networks

Many SR network architectures have been proposed. What makes their different performance?

[Anwar, S., Khan, S., & Barnes, N. (2019). A Deep Journey into Super-resolution: A survey. arXiv preprint arXiv:1904.07523.]

SR networks are still mysterious

Have you met these scenarios?

- Do you need multi-scale architecture or a larger receptive field?
- Does non-local attention module work as you want?
- Why different SR networks perform differently?

We lack scientific understanding and also research tools

Information usage in SR networks

In the past, we only have one metric to study SR networks: The Performance

Add module A, seems good

Add module B, seems good

Combine A and B, not good

Attribution Analysis

Input image

EDSR

RNAN

Why RNAN gives correct results in the center?

Attribution Analysis

What does RNAN notice from the input? Does EDSR notice this information?

Attribution Analysis for High-level Networks

The visualized attribution map

S(I)

house finch

Backprop methods: gradient

 $\partial S(I)$ $\operatorname{Grad}_{S}(I) = \frac{1}{\partial I}$

Attribution Analysis for Low-level Networks

Auxiliary Principles

We introduce auxiliary principlesInterpreting local not global

SR networks can not be interpreted globally

We introduce auxiliary principles for interpreting low-level networks:

Auxiliary Principles

- Interpreting local not global
- Interpreting hard not simple

Interpreting simple cases can provide limited help

We introduce auxiliary principles for interpreting low-level networks:

Auxiliary Principles

We introduce auxiliary principles for interpreting low-level networks:

- Interpreting local not global
- Interpreting hard not simple
- Interpreting features not pixels

Path integrated gradients

We employ Path Integral Gradient

$$\Delta M_{F,D}(\gamma)_i := \int_0^1 \frac{\partial D(F(\gamma(\alpha)))}{\partial \gamma(\alpha)_i} \times \frac{\partial \gamma}{\partial \gamma(\alpha)_i}$$

SR Network F Feature Detector *D* Path function $\gamma(\alpha), \alpha \in \mathbb{R}$ Baseline Input $\gamma(0) = I'$ Input $\gamma(1) = I$

Blurred image as baseline input: $I' = \omega(\sigma) \otimes I$

We design the Baseline Input and Path function especially for SR networks.

Progressive blurring path function: $\gamma_{\rm pb}(\alpha) = \omega(\sigma - \alpha\sigma) \otimes I$

Why using path integral gradient: Gradient Saturation

- a. HR image
- **b.** LR image

- e. interpolated images $\gamma(\alpha)$
- **f.** Output for $D(F(\gamma(\alpha)))$
- **g.** Magnitude of $\partial \gamma(\alpha) / \partial \alpha$
- **h.** Sum of cumulative gradients
- i. Gradients at interpolation

Integrated Gradient

Local Attribution Maps Results

Local Attribution Maps Results

Informative Areas

The similarities and differences of LAM results for different SR networks

- Red areas can be used for the most preliminary level of SR
- Blue areas show the potential informative areas

Images with Small Area of Interest

Rank 6 Rank 7 Rank 8 . Rank 9 Rank 10 Rank 11 Rank 12 Rank 13 Rank 14 Rank 15

Informative Areas

Informative Areas

$$G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |}{2n^2}$$

We propose Diffusion Index for quantitative analysis:

 $DI = (1 - G) \times 100$

- We use Gini Index to indicate the range of involved pixels:
 - $\frac{|g_i g_j|}{2\overline{g}}$

Diffusion Index for Quantitative Analysis: 1.540 2.229 3.078 3.774 5.340

 2.972
 4.151
 5.084
 6.258

6.066

3.756 4.479 5.103 6.398

Diffusion Index vs. Network Performances.

Diffusion Index vs. Receptive Field.

Model	Recpt. Field	PSNR	DI	Remark
FSRCNN	17×17	20.30	0.797	Fully convolution network.
CARN	45×45	21.27	1.807	Residual network.
EDSR	75×75	20.96	2.977	Residual network.
MSRN	107×107	21.39	3.194	Residual network.
RRDBNet	703×703	20.96	13.417	Residual network.
ĪMDN	global	$\overline{21.23}$	14.643	Global pooling.
RFDN	global	21.40	13.208	Global pooling.
RCAN	global	22.20	16.596	Global pooling.
RNAN	global	21.91	13.243	Non-local attention.
SAN	global	22.55	18.642	Non-local attention.

Diffusion Index vs. Network Scale.

Diffusion Index vs. Image Content.

Diffusion Index vs. Image Content.

Interpretability in Low-level Vision

Pixel: What pixels contribute most to restoration?

Feature: Where can we find semantics in SR-net?

Discovering "Semantics" in Super-Resolution Networks

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao, Chao Dong

Shenzhen Institute of Advanced Technology, CAS The University of Hongkong University of Sydney Shanghai Al Lab Institute of Automation, CAS Baidu Inc.

Discovering "Semantic"

No Semantic

Traditional method e.g.,Interpolation

?? Semantic

Clear Semantic

Low-level Vision e.g.,Super-resolution

High-level Vision e.g., Classification

Observation

CinCGAN

BM3D

CinCGAN

BM3D

CinCGAN << BM3D

Observation

Input

CinCGAN

CinCGAN << BM3D

Observation

✓ CinCGAN can figure out the specific degradation types within its training data

The distribution mismatch will make the network "turn off" its ability

(b)

(c)

Input

CinCGAN

BM3D

Analogy to classification

PCA (dimensional reduction) + t-SNE (visualization)

Clustered by the **predefined** object categories

Analogy to classification

•Clustering based on pre-defined object categories

"Conv2_4" "Conv3_4" "Conv4_4" "Conv1" "Conv5_4" Figure 4. Projected feature representations extracted from different layers of ResNet18 using t-SNE. With the network deepens, the representations become more discriminative to object categories, which clearly shows the semantics of the representations in classification.

Deeper features contain clear semantics

Degradation-related semantics in SR-net

Features are clustered by degradations They are trained on a single degradation type!

Classification VS. Super-resolution

Semantics in SR networks are in terms of degradation types regardless of the image contents.

(a) ResNet18 (classification)

(b) SRResNet-wGR

Figure 5. Feature representation differences between classification and super-resolution networks. The same object category is represented by the same color, and the same image degradation type is depicted by the same marker shape. For the classification network, the feature representations are clustered by the same color, while the representations of SR network are clustered by the same marker shape, suggesting there is a significant difference in feature representations between classification and super-resolution networks. Better viewed on the screen.

(c) SRGAN-wGR

Influential Factors

•SR networks with global residual shows discriminability to different degradation types with high-level features.

Figure 7. Projected feature representations extracted from different layers of SRResNet-woGR (1st row) and SRResNet-wGR (2nd row) using t-SNE. With image global residual (GR), the representations of MSE-based SR networks show discriminability to degradation types.

Influential Factors

•SR networks trained with discriminator (GAN) shows more obvious discriminability to different degradation types.

Figure 8. Projected feature representations extracted from different layers of SRGAN-woGR (1st row) and SRGAN-wGR (2nd row) using t-SNE. Even without GR, GAN-based SR networks can still obtain deep degradation representations.

Influential Factors

•Different degradation types/degrees differ a lot in discriminative ablity.

Figure 9. Even for the same type of degradation, different degradation degrees will also cause differences in features. The greater the difference between degradation degrees, the stronger the discriminability. **First row:** SRResNet-wGR. **Second row:** SRGAN-wGR.

Inspirations

Interpreting the Generalization of SR Networks
 Developing Degradation-adaptive Algorithms
 Disentanglement of Image Content/Degradation

Interpretability

in Low-level Vision

Pixel: What pixels contribute most to restoration?

Filters: Whether learned filters are discriminative?

Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution

Liangbin Xie, Xintao Wang, Chao Dong Zhongang Qi, Ying Shan

Applied Research Center (ARC), Tencent PCG Shenzhen Institute of Advanced Technology, CAS

Background – Blind SR

Reconstruct a high-resolution image from its low-resolution counterpart which contains unknown and complex degradations

blur

Typically, consists of two branches•one for degradation prediction•the other for conditional restorations

noise TPEG Degradation Prediction

Two-branch Network

Motivation

We conduct preliminary experiments on several state-of-the-art methods: DAN and DASR.

achieve comparable performance !

Motivation

One-branch network - more like a 'black-box'

Two key questions:

- Could one-branch networks automatically learn to distinguish degradations as in two-branch methods?
- unified network for a specific degradation?

Two-branch network - delicate designs with higher interpretability

✓ Are there any small sub-network (a set of filters) existing inside the

Basic Finding

In one-branch blind SR networks, we are able to find a very small number of (at least to 1%) discriminative filters for each specific degradation (e.g., blur, noise).

Methods – Background

In classification task, Integrated Gradient (IG) is used to attributes the most important input components (e.g., pixels in input images) that affect the network predictions.

$$IG_i(x) = (x_i - \bar{x}_i) \times \int_{\alpha=0}^1 \frac{\partial F(\bar{x} + \alpha \times (x - \bar{x}))}{\partial x_i} d\alpha,$$

Recall that: Gradient – The fastest changing direction So IG finds the input pixels that will change the network output largely, i.e., the most import pixels that can interpret the network prediction.

Filter Attribution Integrated Gradients (FAIG)

	Classification	Blind SR
Purpose	Find input pixels that explain network prediction	Fine core filters that explain degradation removal
Attribute to	Input pixels	network parameters (filters)
Integral path	Input space	Parameter space
Method	Integrated Gradient	Filter Attribution Integrated Gradients (FAIG)

We propose Filter Attribution Integrated Gradients (FAIG) to attribute network functional alterations to filter change.

Methods – FAIG

1. The *baseline network* $F(\overline{\theta})$ is a pure SR network that cannot remove any degradations.

2.The *target network* $F(\theta)$ is a re-trained network that can deal with complex degradations.

3. Given the same input, the changes of the network output can be attributed to the changes of network parameters (*i.e.*, filters).

Methods – FAIG

We quantify the network function of degradation removal by

- $\mathcal{L}(\theta, x) = \| f$
- target model $\gamma(\alpha) = \theta$
- We can get the gradient of each dimension of network parameters with FAIG

$$\mathtt{FAIG}_i(\theta, x) = \int_{\alpha=0}^1 \frac{\partial \mathcal{L}(\gamma(\alpha), x)}{\partial \gamma(\alpha)_i} \times \frac{\gamma(\alpha)_i}{\partial \alpha} d\alpha$$

$$F(\theta, x) - x^{gt} \|_2^2$$

We consider a continuous path between the baseline model and the

$$\bar{\theta} + \alpha \times (\theta - \bar{\theta})$$

Methods – FAIG

of interest D and other degradations ~D.

2.We average all the gradient difference in a whole dataset to eliminate the impact of image contents.

$$FAIG_{i}^{\mathcal{D}}(\theta) = \frac{1}{|\mathcal{X}|} (\sum_{x \in \mathcal{X}} |FAIG_{i}(x)|)$$

attribution for degradtion \mathcal{D}

- 1. We calculate the gradient difference between a specific degradation

Masking Discovered Filters We measure the importance of discovered filters by replacing them with the filters in the baseline model (at the same locations).

Masking Discovered Filters More qualitative results – Mask 1% filters

Mask deblurring filters

GT image

Noisy input

Mask denoising filters

Noisy input

Blurry input

Masking Discovered Filters More qualitative results – Mask 5% filters

Distribution of Discovered Filters

Layer Index

Discovered Filters for Deblurring

The deblurring filters are more located in the back part while denoising filters locate more uniformly.

Layer Index

Discovered Filters for Denoising

Application — Degradation Classification

Predict the degradation of input images without training in the supervision of degradation labels.

we calculate the overlap score (OS) to measure the intersection of the two sets of filters:

$$OS(x, \mathcal{D}) = \frac{|\{filter^{\mathcal{D}}\} \cap \{fil}{|\{filter^x\}|}$$

By setting the thresholds: T^noise and T^blur to 0.6 and 0.5, the prediction accuracy can reach 98% and 96%.

Application — Controllable restoration Interpolate the corresponding parameters (at the same location)

0.8

λ

0.4

0.6

0.9

1.0

1.1 1.2 1.3

Interpretability in Low-level Vision

Pixel: What pixels contribute most to restoration?

Feature: Where can we find semantics in SR-net?

Filters: Whether learned filters are discriminative?

Interpretable Low-Level Vision

Thanks

X-Pixel Group

BasicSR