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2D image-to-image translation
• We have amazing technologies that produce photorealistic outputs 

given Microsoft Paint-like inputs!
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2D image-to-image translation
• We have amazing technologies that produce photorealistic outputs 

given Microsoft Paint-like inputs!
• Trained in a supervised fashion using millions of 

(segmentation map, real image) pairs

• Plug: https://www.nvidia.com/en-us/studio/canvas/ is free and publicly available!
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https://www.nvidia.com/en-us/studio/canvas/


6

What about 3D content creation?

Fancy and complicated tools
AND expensive

^
• Requires years of 

experience
• Lots of time and 

money
• Great for 

professionals!
• But big barrier to 

entry for most 
people
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Is there an easier way? 
• YES!
• Even kids can make 

3D models!
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Its digital counterpart



World-to-world translation
• GANcraft extends the task of 2D image-to-image translation to 3D
• It translates an input 3D world to another view-consistent 3D world
• Our work focuses on converting Minecraft-style semantically-labeled 

block worlds to realistic-looking worlds, without paired supervision
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Creating photorealistic 3D worlds is challenging
• 2D landscape images are widely available on the internet

• But what about paired 3D and 2D image data?
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GANcraft converts voxel worlds to reality!

GANcraft
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High-resolution results
1024 x 2048 pixels, 30 fps
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Grass Flowers
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GANcraft generalizes to new worlds with significant label distribution shifts - desert
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GANcraft generalizes to new worlds with significant label distribution shifts - snow
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GANcraft generalizes to new worlds with unique input geometry – valleys and arches
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Style interpolation
GANcraft can render worlds with different style-conditioning images
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style-
conditioning

image
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style-
conditioning

image
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The 
"Why don't you just use im2im translation? " 

Question
aka

Comparison with baselines
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MUNIT (ECCV’18)

Flickering - generates one image at a time, with no memory of past
Mismatch between segmentation label and texture due to unsupervised training
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SPADE (CVPR’19)

Flickering - generates one image at a time, with no memory of past
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wc-vid2vid (ECCV’20)

View consistent, but fails for large motions due to incremental inpainting
Does not refine blocky geometry
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NSVF-W (NeurIPS’20, CVPR’21)

View consistent, but dull unrealistic outputs due to lack of GAN loss
Single-stage rendering, difficult to scale up
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GANcraft (ours)

Our full model: view consistent, vivid colors, more realistic
Implicitly refines blocky geometry to learn fine details
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GANcraft (ours)MUNIT (ECCV’18) SPADE (CVPR’19) wc-vid2vid (ECCV’20) NSVF-W (NeurIPS’20, CVPR’21)

27



GANcraft (ours)MUNIT (ECCV’18) SPADE (CVPR’19) wc-vid2vid (ECCV’20) NSVF-W (NeurIPS’20, CVPR’21)
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Failure cases
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Some regions look blocky due to underlying 
input geometry
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Certain scene-style combinations 
don’t work well
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GANcraft details
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Problem setting
• We want to render the semantically-labeled voxel world 

(as in Minecraft) as a realistic-looking world
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Problem setting
• We want to render the semantically-labeled voxel world 

(as in Minecraft) as a realistic-looking world
• There is no paired data mapping Minecraft segmentations to real images
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Problem setting
• We want to render the semantically-labeled voxel world 

(as in Minecraft) as a realistic-looking world
• There is no paired data mapping Minecraft segmentations to real images
• Label, geometry and camera pose distribution between Minecraft 

scenes and real images is very different

60% desert, 30% forest, 10% water 5% desert, 50% forest, 30% water, … 35



Problem setting
• We want to render the semantically-labeled voxel world 

(as in Minecraft) as a realistic-looking world
• There is no paired data mapping Minecraft segmentations to real images
• Label, geometry and camera pose distribution between Minecraft 

scenes and real images is very different

• Solution: pseudo-ground truths, and adversarial training

36



Pseudo-ground truth generation

Voxel world

We are given a semantically-labeled voxel world as input

tree

grass
dirt

water
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Pseudo-ground truth generation

Voxel world

We sample random camera locations
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Pseudo-ground truth generation

Voxel world

projected segmentation projected segmentation

and project the voxel world to obtain segmentation maps
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Pseudo-ground truth generation

Voxel world

projected segmentation

pseudo-ground truth

projected segmentation

pseudo-ground truth

im2im
translation

im2im
translation

These segmentation maps are fed to a pretrained image-to-image translation network to obtain pseudo-ground truths
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Such pseudo-ground truths are not guaranteed to be 3D consistent, but our method is designed to be robust to such noisy 
training data
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Why bother with Pseudo-ground truth?
• Enables us to use pixel-wise losses such as the

L1, L2, and the VGG Perceptual loss!

• Why not simply use a GAN loss?
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Pseudo-ground truth significantly improves the quality

GANcraft with pseudo-ground truth
43

GANcraft without using pseudo-ground truth



Why bother with Pseudo-ground truth?
• Enables us to use pixel-wise losses such as the

L1, L2, and the VGG Perceptual loss!

• Why not simply use a GAN loss?
• Truth hurts, but just GAN losses may not be enough for 

complicated tasks
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Training

We sample a camera location, 
obtain the segmentation map, 

and generate the pseudo-ground truth

Voxel world

pseudo-ground truthsegmentation map

SPADE
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Image pixel 
features

Per-sample MLP
and blending

Training

We sample N points from voxels along the ray, 
trilinearly interpolate the corner features and pass them through a per-sample MLP, 

and blend them to obtain image pixel features

Voxel world

pseudo-ground truthsegmentation map

N 1

SPADE

feature per voxel vertices
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Per-sample MLP
and blending

Image pixel 
features

Training

We pass the image pixel features to a CNN
and generate an output image

CNN
renderer

Voxel world

pseudo-ground truth

N 1

segmentation map

SPADE

feature per voxel vertices

generated image
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Per-sample MLP
and blending

Image pixel 
features

Training

Both the MLP and the CNN are conditioned on the style of the pseudo-ground truth image

Style encoder

CNN
renderer

Voxel world

pseudo-ground truth

N 1

segmentation map

The style encoder explains away the view-inconsistency of pseudo-ground truth image

SPADE

feature per voxel vertices

generated image
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Per-sample MLP
and blending

Image pixel 
features

Losses

We apply a GAN loss, VGG-19 perceptual loss, and pixel-wise losses between the output and pseudo-ground truth

Style encoder

CNN
renderer

Voxel world

pseudo-ground truth

N 1

segmentation map

SPADE

GAN, VGG, L1 , L2

feature per voxel vertices

generated image
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Per-sample MLP
and blending

Image pixel 
features

Losses

We also apply a GAN loss between the output and real images to improve realism

Style encoder

CNN
renderer

Voxel world

pseudo-ground truth real image

N 1

segmentation map

SPADE

GAN, VGG, L1 , L2 GAN

feature per voxel vertices

generated image
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Additional Details
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Neural sky dome

Per-sample MLP
and blending

Image pixel 
features

Style encoder

CNN
renderer

Voxel world

pseudo-ground truth real image

GANGAN, VGG, L1 , L2

feature per voxel vertices

N 1

segmentation map

SPADE

sky dome

A neural sky dome located at infinitely far away catches the residual transmittance.

generated image
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Two-stage renderer improves scalability
MLP: N evaluations per pixel CNN: approx. 1 evaluation per pixel

MLP

MLP

MLP

MLP

MLP

…
MLP

BlendN 1

Intermediate 
feature map

CNN

Final image

GANcraft only uses 24 samples per ray in the volumetric rendering stage – noisy feature map
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Two-stage renderer improves scalability
MLP: N evaluations per pixel CNN: approx. 1 evaluation per pixel

MLP

MLP

MLP

MLP

MLP

…
MLP

BlendN 1

Intermediate 
feature map

CNN

Final image

GANcraft only uses 24 samples per ray in the volumetric rendering stage – noisy feature map
WHY?? NeRF uses over a 100!
• NeRF applies L2 loss per pixel only
• We need to produce the whole image (not just a subset) to apply perceptual and GAN losses

54



Two-stage renderer improves scalability
MLP: N evaluations per pixel CNN: approx. 1 evaluation per pixel

MLP

MLP

MLP

MLP

MLP

…
MLP

BlendN 1

Intermediate 
feature map

CNN

Final image

GANcraft only uses 24 samples per ray in the volumetric rendering stage – noisy feature map
The CNN aggregates information within local patches and removes noise

The CNN is more flops-efficient than the radiance field MLP due to fewer number of evaluations
Need small CNN to preserve view-consistency!
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Two-stage renderer improves quality

Two-stage (MLP + CNN)One-stage (MLP only)

Two-stage rendering pipeline produces images with better detail under the same computation and memory budget
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Please refer to the main paper for further details and quantitative results
Website: https://nvlabs.github.io/GANcraft/

Code available at https://github.com/nvlabs/imaginaire/
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https://nvlabs.github.io/GANcraft/
https://github.com/nvlabs/imaginaire/
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Per-sample MLP
and blending

intermediate feature map

Style encoder

Global 
CNN

Voxel world

pseudo-ground truth real image

GANGAN, VGG, L1 , L2

N 1

segmentation map

SP
A

D
E

sky dome
generated image
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